Optimized, trained, classifier has been pickled under the name 'trained_classifier.p'
Time to run grid search: 149.923 sec. Average of 4.9974 sec per classifier fit/predict cycle (per parameter combo per CV-fold)
Best score: 31.08% accuracy, vs. random guessing at: 2.00%, for a factor of 15.5X improvement.
Best Parameters:{'compute_importances': True, 'max_features': 16, 'n_jobs': 1, 'n_estimators': 50}
Features (most to least important):
aspect ratio relative importance: 0.154
pixel count relative importance: 0.0852
image peaks relative importance: 0.044
std red relative importance: 0.0432
std lum v-edges relative importance: 0.0414
>thresh v-edges relative importance: 0.0407
std blue relative importance: 0.0397
std h-edges relative importance: 0.0386
>thresh h-edges relative importance: 0.0386
avg red relative importance: 0.0384
median lum v-edges relative importance: 0.0384
std green relative importance: 0.0371
avg lum v-edges relative importance: 0.0371
avg blue relative importance: 0.0357
avg green relative importance: 0.0353
avg lum h-edges relative importance: 0.0345
median red relative importance: 0.0336
median lum h-edges relative importance: 0.0336
median blue relative importance: 0.032
median green relative importance: 0.0317
std lum relative importance: 0.031
median lum relative importance: 0.0287
avg lum relative importance: 0.0274
Grid Search Scores:
mean: 0.29760, std: 0.01536, params: {'compute_importances': True, 'max_features': 5, 'n_jobs': 1, 'n_estimators': 50}
mean: 0.30561, std: 0.01219, params: {'compute_importances': True, 'max_features': 8, 'n_jobs': 1, 'n_estimators': 50}
mean: 0.31079, std: 0.01305, params: {'compute_importances': True, 'max_features': 16, 'n_jobs': 1, 'n_estimators': 50}
//anaconda/python.app/Contents/lib/python2.7/site-packages/sklearn/grid_search.py:466: DeprecationWarning: Passing function as ``score_func`` is deprecated and will be removed in 0.15. Either use strings or score objects.The relevant new parameter is called ''scoring''.
self.loss_func, self.score_func, self.scoring)