In [1]:
import numpy as np
In [2]:
def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))
In [3]:
X = np.array([ [0,1,1],
[1,1,1],
[1,0,0],])
In [4]:
X
Out[4]:
In [5]:
y = np.array([[0,1,1]]).T
In [6]:
y
Out[6]:
In [7]:
np.random.seed(1)
In [8]:
syn0 = 2*np.random.random((3,1)) - 1
In [14]:
syn0
Out[14]:
In [15]:
for iter in xrange(10000):
# forward prop
l0 = X
l1 = nonlin(np.dot(l0,syn0))
# error
l1_error = y - l1
# back prop
l1_delta = l1_error * nonlin(l1,True)
# weights update
syn0 += np.dot(l0.T,l1_delta)
In [16]:
l0
Out[16]:
In [17]:
l1
Out[17]:
In [18]:
l1_error
Out[18]:
In [19]:
l1_delta
Out[19]:
In [20]:
syn0
Out[20]:
In [21]:
print "Trained output:"
print l1
In [ ]: