In [1]:
import numpy as np
In [2]:
def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))
In [3]:
X = np.array([ [0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
In [4]:
y = np.array([[0]
,[1]
,[1]
,[0]])
In [5]:
np.random.seed(1)
In [6]:
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
In [7]:
syn0
syn1
Out[7]:
In [8]:
for j in xrange(60000):
# forward prop
l0 = X
l1 = nonlin(np.dot(l0,syn0))
l2 = nonlin(np.dot(l1,syn1))
# l2 error
l2_error = y - l2
if (j% 10000) ==0:
print "Error:" + str(np.mean(np.abs(l2_error)))
# back prop
l2_delta = l2_error * nonlin(l2,deriv=True)
# l1 value to l2 error
l1_error = l2_delta.dot(syn1.T)
# back prop
l1_delta = l1_error * nonlin(l1,deriv=True)
# weights update
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
In [ ]: