Out[16]:
$$\left[\begin{matrix}\cos{\left (\theta_{1} \right )} \cos{\left (\theta_{2} \right )} & - \sin{\left (\theta_{1} \right )} \cos{\left (\theta_{3} \right )} + \sin{\left (\theta_{2} \right )} \sin{\left (\theta_{3} \right )} \cos{\left (\theta_{1} \right )} & \sin{\left (\theta_{1} \right )} \sin{\left (\theta_{3} \right )} + \sin{\left (\theta_{2} \right )} \cos{\left (\theta_{1} \right )} \cos{\left (\theta_{3} \right )}\\\sin{\left (\theta_{1} \right )} \cos{\left (\theta_{2} \right )} & \sin{\left (\theta_{1} \right )} \sin{\left (\theta_{2} \right )} \sin{\left (\theta_{3} \right )} + \cos{\left (\theta_{1} \right )} \cos{\left (\theta_{3} \right )} & \sin{\left (\theta_{1} \right )} \sin{\left (\theta_{2} \right )} \cos{\left (\theta_{3} \right )} - \sin{\left (\theta_{3} \right )} \cos{\left (\theta_{1} \right )}\\- \sin{\left (\theta_{2} \right )} & \sin{\left (\theta_{3} \right )} \cos{\left (\theta_{2} \right )} & \cos{\left (\theta_{2} \right )} \cos{\left (\theta_{3} \right )}\end{matrix}\right]$$