Time Evolution


In [10]:
#for using custom PyPPM for development:
import sys
sys.path.insert(0, '/home/user/PyPPM/')

%pylab nbagg
from ppmpy import ppm
from ppmpy import rprofile
import os


data_dir = '/data/ppm_rpod2/'


Populating the interactive namespace from numpy and matplotlib

In [11]:
!ls /data/ppm_rpod2/YProfiles/
project = 'AGBTP_M2.0Z1.e-5'


AGBTP_M2.0Z1.e-5  O-shell-M25	  agb-entrainment-convergence
C-ingestion	  O-shell-mixing  sakurai
M4ZAMS		  RAWD		  sakurai-num-exp-robustness-onset-GOSH

In [12]:
ppm.set_YProf_path(os.path.join(data_dir,'YProfiles',project))
ppm.cases


Out[12]:
['F6', 'F7', 'F11', 'F4', 'F5']

In [13]:
case = 'F4'
F4 = ppm.yprofile(case,silent = False)


Reading attributes from file  YProfile-01-1959.bobaaa
There are 1960 YProfile files in the /data/ppm_rpod2/YProfiles/AGBTP_M2.0Z1.e-5/F4 directory.
Ndump values range from 0 to 1959
Time values range from 86.5493 to 162264.0

In [14]:
rp_set = rprofile.rprofile_set(os.path.join(data_dir,'RProfiles',project,case))
ppm.plot_mach_number(rp_set,F4,range(1,1950,10),comp = 'max',insert=True,lims=[0., 2706.,0., 0.35],
                 lims_insert =[2690., 2706.,0., 5. ],ifig = 2)
#Plotting every 10th for speed


/usr/local/lib/python3.5/dist-packages/matplotlib/figure.py:1743: UserWarning: This figure includes Axes that are not compatible with tight_layout, so its results might be incorrect.
  warnings.warn("This figure includes Axes that are not "

In [18]:
ppm.plot_p_top(F4,range(0,1950,10),32.,insert=True,lims=[0., 2706.,-0.02, 0.12],
                 lims_insert =[2690., 2706.,0.1, 0.6 ],)
#Plotting every 10th for speed


/usr/local/lib/python3.5/dist-packages/matplotlib/figure.py:1743: UserWarning: This figure includes Axes that are not compatible with tight_layout, so its results might be incorrect.
  warnings.warn("This figure includes Axes that are not "

In [16]:
ppm.L_H_L_He_comparison(['F4','F5','F13'],sparse = 40)


Processing F4...
Processing will be done in 5 s.
Processing F5...
Processing will be done in 2 s.
Processing F13...

In [17]:
dumps = np.array(range(0,1400,100))
r1=27.7;r2=28.5
F4.plot_entrainment_rates(dumps,r1,r2)



In [ ]: