Analisis Tingkat Pelanggan Kembali pada Suharti


In [25]:
library(ggplot2)
library(MASS)
library(reshape2)
library(corrplot)
library(plyr)
library(mgcv)
library(sm)
library(vars)
library(lattice)
library(R2HTML)
library(knitr)
library(IRkernel)
options(repr.plot.width = 7)
options(repr.plot.height = 5)


Loading required package: nlme
This is mgcv 1.8-9. For overview type 'help("mgcv-package")'.
Package 'sm', version 2.2-5.4: type help(sm) for summary information

Attaching package: ‘sm’

The following object is masked from ‘package:MASS’:

    muscle

Loading required package: strucchange
Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

    as.Date, as.Date.numeric

Loading required package: sandwich
Loading required package: urca
Loading required package: lmtest

Data Suharti:


In [26]:
DataOutback <-read.csv("Suharti.csv", header=TRUE, sep=",") 
DataOutback


Out[26]:
RRSTampilanSMenuSPackagingSWifiSPembayaranSPelayananS
15444444
23333344
35344254
44433344
52111232
64344444
73444444
84323243
93334344
103344344
115433344
124433244
135334354
143221144
154444444
164335555
173444444
183324344
191332223
205224333
214334344
224423254
233444344
243322244
255344344
263333344
273224344
283334343
292322223
303333234
314322244
324444233
332223144
344433443
354444243
364443233
374454434
383432234
395433344
403434354
413344344
423333333
434434344
444324244
453444344
464333244
471233232
484444244
493322234
504333344
513334344
524344444
534333344
544443243
553444234
564433344
574333244
583444444
594333344
604333234

Summary Data Outback

Nilai Mean dari data lebih besar dari nilai 3, atau RG, kecuali wifi dengan mean 2.7


In [27]:
summary(DataOutback)


Out[27]:
      RRS         TampilanS         MenuS         PackagingS       WifiS      
 Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000  
 1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:2.000  
 Median :4.00   Median :3.000   Median :3.000   Median :3.50   Median :3.000  
 Mean   :3.55   Mean   :3.283   Mean   :3.117   Mean   :3.35   Mean   :2.733  
 3rd Qu.:4.00   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.:4.00   3rd Qu.:3.000  
 Max.   :5.00   Max.   :4.000   Max.   :5.000   Max.   :5.00   Max.   :5.000  
  PembayaranS      PelayananS   
 Min.   :2.000   Min.   :2.000  
 1st Qu.:4.000   1st Qu.:4.000  
 Median :4.000   Median :4.000  
 Mean   :3.817   Mean   :3.767  
 3rd Qu.:4.000   3rd Qu.:4.000  
 Max.   :5.000   Max.   :5.000  

Korelasi:

Korelasi terbesar dengan Tingkat Kembali Konsumen (Retention Rate) adalah Pembayaran dan Pelayanan


In [28]:
cor(DataOutback)


Out[28]:
RRSTampilanSMenuSPackagingSWifiSPembayaranSPelayananS
RRS1.00000000.34812850.23997960.33526750.25031760.45864340.3464381
TampilanS0.34812851.00000000.61018100.33055560.28488600.16174950.2747542
MenuS0.239979600.610180971.000000000.579546160.433026870.077077190.18330124
PackagingS0.33526750.33055560.57954621.00000000.59458360.42567190.3455232
WifiS0.25031760.28488600.43302690.59458361.00000000.30002930.3205987
PembayaranS0.458643450.161749530.077077190.425671940.300029281.000000000.53201680
PelayananS0.34643810.27475420.18330120.34552320.32059870.53201681.0000000

1. Hubungan Tampilan Interior dengan Retention Rate

Hubungan positif signifikan


In [29]:
# qplot(DataOutback,
#       x = DataOutback$RRS,
#       y = DataOutback$TampilanS,
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Suharti",
#       ylab = "Tampilan Interior Suharti",
#       main = "Hubungan Tampilan Interior dengan Retention Rate")

Gambar di atas dimodifikasi agar tidak bertumpuk, gambar di bawah adalah gambar hubungan asli Retention Rate dengan Tampilan


In [30]:
# qplot(x = RRS,
#       TampilanS,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Suharti",
#       ylab = "Tampilan Interior Suharti",
#       main = "Hubungan Tampilan Interior dengan Retention Rate",
#       formula = y ~ x)

Hasil Regresi Retention Rate dengan Tampilan:

* Tampilan signifikan mempengaruhi Retention Rate

* Signifikansi ditunjujan dengan nilai p-value 0.006 pada hasil di bawah


In [31]:
regression_RRO_TampilanO = lm(RRS ~ TampilanS, data = DataOutback)
summary(regression_RRO_TampilanO)


Out[31]:
Call:
lm(formula = RRS ~ TampilanS, data = DataOutback)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.4228 -0.4228  0.1283  0.5772  2.0260 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   2.0763     0.5323   3.900 0.000252 ***
TampilanS     0.4488     0.1587   2.828 0.006417 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8425 on 58 degrees of freedom
Multiple R-squared:  0.1212,	Adjusted R-squared:  0.106 
F-statistic: 7.999 on 1 and 58 DF,  p-value: 0.006417

2. Hubungan Tampilan Menu dengan Retention Rate

Hubungan positif signifikan


In [32]:
# qplot(x = RRS,
#       y = MenuS,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       method = "lm",
#       xlab = "Retention Rate Suharti",
#       ylab = "Menu SuhartI",
#       main = "Hubungan Tampilan Menu dengan Retention Rate",
#       formula = y ~ x)


In [33]:
# qplot(x = RRS,
#       y = MenuS,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Suharti",
#       ylab = "Menu Sharti",
#       main = "Hubungan Tampilan Menu dengan Retention Rate",
#       formula = y ~ x)

Hasil Regresi Retention Rate dengan Tampilan Menu:

* Tampilan signifikan mempengaruhi Retention Rate

* Signifikansi ditunjujan dengan nilai p-value 0.06 pada hasil dibawah


In [34]:
regression_RRO_MenuO = lm(RRS ~ MenuS, data = DataOutback)
summary(regression_RRO_MenuO)


Out[34]:
Call:
lm(formula = RRS ~ MenuS, data = DataOutback)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.5190 -0.5190  0.2152  0.4810  1.7468 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   2.7215     0.4542   5.991 1.41e-07 ***
MenuS         0.2658     0.1412   1.883   0.0648 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8725 on 58 degrees of freedom
Multiple R-squared:  0.05759,	Adjusted R-squared:  0.04134 
F-statistic: 3.544 on 1 and 58 DF,  p-value: 0.06477

3. Hubungan Tampilan Packaging dengan Retention Rate

Hubungan positif signifikan


In [35]:
# qplot(x = RRS,
#       y = PackagingS,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Suharti",
#       ylab = "Menu Suharti",
#       main = "Hubungan Tampilan Packaging dengan Retention Rate",
#       formula = y ~ x)


In [36]:
# qplot(x = RRS,
#       y = PackagingS,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Suharti",
#       ylab = "Packaging Suharti",
#       main = "Hubungan Tampilan Packaging Makanan dengan Retention Rate",
#       formula = y ~ x)

Hasil Regresi Retention Rate dengan Packaging:

* Packaging signifikan mempengaruhi Retention Rate pada alpha 10%

* Signifikansi ditunjukan dengan nilai p-value 0.008 pada hasil di bawah


In [37]:
regression_RRO_MenuO = lm(RRS ~ PackagingS, data = DataOutback)
summary(regression_RRO_MenuO)


Out[37]:
Call:
lm(formula = RRS ~ PackagingS, data = DataOutback)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.4224 -0.7869  0.2131  0.5776  1.5776 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   2.3291     0.4635   5.025 5.14e-06 ***
PackagingS    0.3644     0.1345   2.710  0.00883 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8467 on 58 degrees of freedom
Multiple R-squared:  0.1124,	Adjusted R-squared:  0.0971 
F-statistic: 7.345 on 1 and 58 DF,  p-value: 0.008829

4. Hubungan Wifi dengan Retention Rate

Hubungan positif signifikan


In [38]:
# qplot(x = RRS,
#       y = WifiS,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Suharti",
#       ylab = "Wifi Suharti",
#       main = "Hubungan Wifi dengan Retention Rate pada Suharti",
#       formula = y ~ x)


In [39]:
# qplot(x = RRS,
#       y = WifiS,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Suharti",
#       ylab = "Wifi Suharti",
#       main = "Hubungan Wifi dengan Retention Rate",
#       formula = y ~ x)

Hasil Regresi Retention Rate dengan Wifi:

* Wifi signifikan mempengaruhi Retention Rate pada alpha 10%

* Signifikansi ditunjukan dengan nilai p-value 0.05 pada hasil di bawah


In [40]:
regression_RRO_wifiO = lm(RRS ~ WifiS, data = DataOutback)
summary(regression_RRO_wifiO)


Out[40]:
Call:
lm(formula = RRS ~ WifiS, data = DataOutback)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.3507 -0.6225  0.1057  0.6493  1.6493 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   2.8070     0.3937   7.130 1.77e-09 ***
WifiS         0.2718     0.1380   1.969   0.0537 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8701 on 58 degrees of freedom
Multiple R-squared:  0.06266,	Adjusted R-squared:  0.0465 
F-statistic: 3.877 on 1 and 58 DF,  p-value: 0.05373

5. Hubungan Pembayaran dengan Retention Rate

Hubungan positif signifikan


In [41]:
# qplot(x = RRS,
#       y = PembayaranS,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Suharti",
#       ylab = "Pembayaran Suharti",
#       main = "Hubungan Servis Permbayaran dengan Retention Rate pada Suharti",
#       formula = y ~ x)


In [42]:
# qplot(x = RRS,
#       y = PembayaranS,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Suhari",
#       ylab = "Service Pembayaran Suharti",
#       main = "Hubungan Tampilan Menu dengan Retention Rate",
#       formula = y ~ x)

Hasil Regresi Retention Rate dengan Pembayaran:

* Pembayaran signifikan mempengaruhi Retention Rate pada alpha 1%

* signifikannya variabel Pembayaran ditunjukan dengan nilai p-value 0.0028 pada hasil di bawah


In [43]:
regression_RRO_PembayaranO = lm(RRS ~ PembayaranS, data = DataOutback)
summary(regression_RRO_PembayaranO)


Out[43]:
Call:
lm(formula = RRS ~ PembayaranS, data = DataOutback)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.0152 -0.6701  0.3300  0.3300  1.9848 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   1.0508     0.6441   1.631 0.108246    
PembayaranS   0.6548     0.1666   3.931 0.000228 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7987 on 58 degrees of freedom
Multiple R-squared:  0.2104,	Adjusted R-squared:  0.1967 
F-statistic: 15.45 on 1 and 58 DF,  p-value: 0.0002283

6. Hubungan Pelayanan dengan Retention Rate

Hubungan positif signifikan


In [44]:
# qplot(x = RRS,
#       y = PelayananS,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Suharti",
#       ylab = "Pelayanan Suharti",
#       main = "Hubungan Pelayanan dengan Retention Rate pada Suharti",
#       formula = y ~ x)

Hasil Regresi Retention Rate dengan Pelayanan:

* Wifi signifikan mempengaruhi Retention Rate pada alpha 1%

* signifikannya variabel Pelayanan ditunjukan dengan nilai p-value 0.0067 pada hasil di bawah


In [45]:
regression_RRO_PelayananO = lm(RRS ~ PelayananS, data = DataOutback)
summary(regression_RRO_PelayananO)


Out[45]:
Call:
lm(formula = RRS ~ PelayananS, data = DataOutback)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.1056 -0.6853  0.3147  0.3147  1.8944 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   1.3665     0.7839   1.743   0.0866 . 
PelayananS    0.5797     0.2061   2.813   0.0067 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8431 on 58 degrees of freedom
Multiple R-squared:   0.12,	Adjusted R-squared:  0.1048 
F-statistic: 7.911 on 1 and 58 DF,  p-value: 0.006696

Analissa: Bagaimana Hubungan Keseluruhan Variabel dengan Retention Rate pada Outback?

* Hanya Pembayaran yang signifikan


In [46]:
reg_all <- lm(RRS ~ TampilanS + MenuS + PackagingS + WifiS + PembayaranS + PelayananS, data = DataOutback)
summary(reg_all)


Out[46]:
Call:
lm(formula = RRS ~ TampilanS + MenuS + PackagingS + WifiS + PembayaranS + 
    PelayananS, data = DataOutback)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.51546 -0.55038  0.05472  0.45182  2.29339 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -0.107971   0.852189  -0.127   0.8997  
TampilanS    0.313773   0.193648   1.620   0.1111  
MenuS        0.006011   0.196368   0.031   0.9757  
PackagingS   0.082370   0.190518   0.432   0.6672  
WifiS        0.008822   0.159135   0.055   0.9560  
PembayaranS  0.500384   0.211446   2.366   0.0216 *
PelayananS   0.105973   0.236655   0.448   0.6561  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7888 on 53 degrees of freedom
Multiple R-squared:  0.2961,	Adjusted R-squared:  0.2165 
F-statistic: 3.717 on 6 and 53 DF,  p-value: 0.003707

7. Variabel apa saja yang signifikan dalam mempengaruhi Retention Rate?


In [47]:
library(leaps)
regsubsets.out <-regsubsets(RRS ~ TampilanS + MenuS + PackagingS + WifiS + PembayaranS + PelayananS,
               data = DataOutback,
               nbest = 1,       # 1 best model for each number of predictors
               nvmax = NULL,    # NULL for no limit on number of variables
               force.in = NULL, force.out = NULL,
               method = "exhaustive")
regsubsets.out


Out[47]:
Subset selection object
Call: regsubsets.formula(RRS ~ TampilanS + MenuS + PackagingS + WifiS + 
    PembayaranS + PelayananS, data = DataOutback, nbest = 1, 
    nvmax = NULL, force.in = NULL, force.out = NULL, method = "exhaustive")
6 Variables  (and intercept)
            Forced in Forced out
TampilanS       FALSE      FALSE
MenuS           FALSE      FALSE
PackagingS      FALSE      FALSE
WifiS           FALSE      FALSE
PembayaranS     FALSE      FALSE
PelayananS      FALSE      FALSE
1 subsets of each size up to 6
Selection Algorithm: exhaustive

In [48]:
summary.out <- summary(regsubsets.out)
as.data.frame(summary.out$outmat)


Out[48]:
TampilanSMenuSPackagingSWifiSPembayaranSPelayananS
1 ( 1 ) *
2 ( 1 )* *
3 ( 1 )* * *
4 ( 1 )* * **
5 ( 1 )* ****
6 ( 1 )******

Analisa dengan Adjusted R square pada Multivariable Regression:

Variabel Pembayaran dan Tampilan yang signifikan dan memberikan Adjusted R square tertinggi.


In [49]:
# plot(regsubsets.out, scale = "adjr2", main = "Adjusted R^2")

Variabel Wifi dan Pelayanan yang signifikan dan memberikan Adjusted R square tertinggi:

* Adjusted R square benilai 0.2624,

* p-value Tampilan 0.06 signiifikan pada alpha 5%

* p-value Pembayaran 0.00057 signigfikan pada alpha 0.1%


In [50]:
reg_best <- lm(RRS ~ TampilanS + PembayaranS, data = DataOutback)
summary(reg_best)


Out[50]:
Call:
lm(formula = RRS ~ TampilanS + PembayaranS, data = DataOutback)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.60283 -0.55538  0.08193  0.44462  2.39717 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.1079     0.7247   0.149 0.882191    
TampilanS     0.3627     0.1461   2.483 0.016004 *  
PembayaranS   0.5899     0.1618   3.646 0.000577 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7653 on 57 degrees of freedom
Multiple R-squared:  0.2874,	Adjusted R-squared:  0.2624 
F-statistic:  11.5 on 2 and 57 DF,  p-value: 6.395e-05

In [ ]:


In [ ]: