In [28]:
    
library(ggplot2)
library(MASS)
library(reshape2)
library(corrplot)
library(plyr)
library(mgcv)
library(sm)
library(vars)
library(lattice)
library(R2HTML)
library(knitr)
library(IRkernel)
options(repr.plot.width = 7)
options(repr.plot.height = 5)
    
In [29]:
    
DataOutback <-read.csv("Outback.csv", header=TRUE, sep=",") 
DataOutback
    
    Out[29]:
In [30]:
    
summary(DataOutback)
    
    Out[30]:
In [31]:
    
cor(DataOutback)
    
    Out[31]:
In [32]:
    
# qplot(DataOutback,
#       x = DataOutback$RRO,
#       y = DataOutback$TampilanO,
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Outback",
#       ylab = "Tampilan Interior Outback",
#       main = "Hubungan Tampilan Interior dengan Retention Rate")
    
In [33]:
    
# qplot(x = RRO,
#       TampilanO,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Outback",
#       ylab = "Tampilan Interior Outback",
#       main = "Hubungan Tampilan Interior dengan Retention Rate",
#       formula = y ~ x)
    
In [34]:
    
regression_RRO_TampilanO = lm(RRO ~ TampilanO, data = DataOutback)
summary(regression_RRO_TampilanO)
    
    Out[34]:
In [35]:
    
# qplot(x = RRO,
#       y = MenuO,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       method = "lm",
#       xlab = "Retention Rate Outback",
#       ylab = "Menu Outback",
#       main = "Hubungan Tampilan Menu dengan Retention Rate",
#       formula = y ~ x)
    
In [36]:
    
# qplot(x = RRO,
#       y = MenuO,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Outback",
#       ylab = "Menu Outback",
#       main = "Hubungan Tampilan Menu dengan Retention Rate",
#       formula = y ~ x)
    
In [37]:
    
regression_RRO_MenuO = lm(RRO ~ MenuO, data = DataOutback)
summary(regression_RRO_MenuO)
    
    Out[37]:
In [38]:
    
# qplot(x = RRO,
#       y = PackagingO,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Outback",
#       ylab = "Packaging Outback",
#       main = "Hubungan Tampilan Packaging dengan Retention Rate",
#       formula = y ~ x)
    
In [39]:
    
# qplot(x = RRO,
#       y = PackagingO,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Outback",
#       ylab = "Packaging Outback",
#       main = "Hubungan Tampilan Packaging Makanan dengan Retention Rate",
#       formula = y ~ x)
    
In [40]:
    
regression_RRO_MenuO = lm(RRO ~ PackagingO, data = DataOutback)
summary(regression_RRO_MenuO)
    
    Out[40]:
In [41]:
    
# qplot(x = RRO,
#       y = WifiO,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Outback",
#       ylab = "Wifi Outback",
#       main = "Hubungan Wifi dengan Retention Rate pada Outback",
#       formula = y ~ x)
    
In [42]:
    
# qplot(x = RRO,
#       y = WifiO,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Outback",
#       ylab = "Wifi Outback",
#       main = "Hubungan Wifi dengan Retention Rate",
#       formula = y ~ x)
    
In [43]:
    
regression_RRO_wifiO = lm(RRO ~ WifiO, data = DataOutback)
summary(regression_RRO_wifiO)
    
    Out[43]:
In [44]:
    
# qplot(x = RRO,
#       y = PembayaranO,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Outback",
#       ylab = "Pembayaran Outback",
#       main = "Hubungan Servis Permbayaran dengan Retention Rate pada Outback",
#       formula = y ~ x)
    
In [45]:
    
# qplot(x = RRO,
#       y = PembayaranO,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Outback",
#       ylab = "Service Pembayaran Outback",
#       main = "Hubungan Tampilan Menu dengan Retention Rate",
#       formula = y ~ x)
    
In [46]:
    
regression_RRO_PembayaranO = lm(RRO ~ PembayaranO, data = DataOutback)
summary(regression_RRO_PembayaranO)
    
    Out[46]:
In [47]:
    
# qplot(x = RRO,
#       y = PelayananO,
#       data = DataOutback,
#       geom = c("point"),
#       position = position_jitter(w = 0.1, h = 0.1),
#       xlab = "Retention Rate Outback",
#       ylab = "Pelayanan Outback",
#       main = "Hubungan Pelayanan dengan Retention Rate pada Outback",
#       formula = y ~ x)
    
In [48]:
    
# qplot(x = RRO,
#       y = PelayananO,
#       data = DataOutback,
#       geom = c("point", "smooth"),
#       method = "lm",
#       xlab = "Retention Rate Outback",
#       ylab = "Pelayanan Outback",
#       main = "Hubungan Pelayanan dengan Retention Rate",
#       formula = y ~ x)
    
In [49]:
    
regression_RRO_PelayananO = lm(RRO ~ PelayananO, data = DataOutback)
summary(regression_RRO_PelayananO)
    
    Out[49]:
In [50]:
    
reg_all <- lm(RRO ~ TampilanO + MenuO + PackagingO + WifiO + PembayaranO + PelayananO, data = DataOutback)
summary(reg_all)
    
    Out[50]:
In [51]:
    
library(leaps)
regsubsets.out <-regsubsets(RRO ~ TampilanO + MenuO + PackagingO + WifiO + PembayaranO + PelayananO,
               data = DataOutback,
               nbest = 1,       # 1 best model for each number of predictors
               nvmax = NULL,    # NULL for no limit on number of variables
               force.in = NULL, force.out = NULL,
               method = "exhaustive")
regsubsets.out
    
    Out[51]:
In [52]:
    
summary.out <- summary(regsubsets.out)
as.data.frame(summary.out$outmat)
    
    Out[52]:
In [53]:
    
# plot(regsubsets.out, scale = "adjr2", main = "Adjusted R^2")
    
In [54]:
    
reg_best <- lm(RRO ~ WifiO + PelayananO, data = DataOutback)
summary(reg_best)
    
    Out[54]:
In [ ]:
    
    
In [ ]:
    
    
In [ ]: