In [1]:
# import packages
import nugridse as mp
import os, sys, fnmatch
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
# load restart.h5 or out.h5 files
a = mp.se('.','restart.h5')
In [6]:
# settin up the stage for plotting
models = [a]
cyc = models[0].se.cycles # [6410]
sparsity = 1000 # sparsity factor applied on cyc to make plots.
limit_x = [1.022,1.027]
limit_y = [5.0e-9,2.5]
# species I want to plot
species = ['H-1','He-4','C-12','C-13','C-14','N-14','Ne-22','Fe-56','Cu-65','Kr-86','Sr-88']
# symbols and line weight used for the plot
symb = ['r-','g-','b-','c-','m-','k-','y-','r--','g--','b--','c--','m--','k--','y--']
line_weight = ['2.','5.']
#name_movie = 'test.avi'
In [7]:
I_want_ratio = False
if not I_want_ratio:
ii = 0
for i in models:
jjj = 0
for k in cyc[::sparsity]:
print 'cyc=',k
#figure(jjj)
#
jj = 0
for j in species:
if ii == 0:
plt.semilogy(i.se.get(k,'mass'),i.se.get(k,'iso_massf',j),symb[jj],linewidth=line_weight[ii],label=species[jj])
elif ii>0:
plt.semilogy(i.se.get(k,'mass'),i.se.get(k,'iso_massf',j),symb[jj],linewidth=line_weight[ii])
jj=jj+1
plt.semilogy(i.se.get(k,'mass'),i.se.get(k,'dcoeff')/1.e14,'m-+',label='D_coeff/1e14')
# for the figure
plt.title('cycle= '+str(int(k)), fontsize=20)
plt.legend(numpoints=1,loc='upper right',bbox_to_anchor=(1.45, 0.99),ncol=1,shadow=False)
plt.ylim(limit_y[0],limit_y[1])
plt.xlim(limit_x[0],limit_x[1])
plt.xlabel('Mass', fontsize='15.')
plt.ylabel('X', fontsize='15.')
fname = "tmp%04d.jpg"%int(k)
#fname = "tmp%04d.png"%int(k)
print fname
plt.savefig(fname)
plt.show()
#close()
#
jjj=jjj+1
ii=ii+1
else:
print('this can be developed to do plot of ratios')
for ik in cyc:
plt.semilogy(models[0].se.get(ik,'mass'),np.array(models[0].se.get(ik,'iso_massf','Mg-25'))/np.array(models[0].se.get(ik,'iso_massf','Mg-25')),symb[0],label='Mg-25')
plt.semilogy(models[0].se.get(ik,'mass'),np.array(models[0].se.get(ik,'iso_massf','Mg-26'))/np.array(models[0].se.get(ik,'iso_massf','Mg-26')),symb[1],label='Mg-26')
plt.semilogy(models[0].se.get(ik,'mass'),np.array(models[0].se.get(ik,'iso_massf','Zr-94'))/np.array(models[0].se.get(ik,'iso_massf','Zr-94')),symb[2],label='Zr-94')
plt.semilogy(models[0].se.get(ik,'mass'),np.array(models[0].se.get(ik,'iso_massf','Zr-96'))/np.array(models[0].se.get(ik,'iso_massf','Zr-96')),symb[3],label='Zr-96')
plt.axhline(y=1.,color='k',ls='dashed')
In [5]:
#os.system('mencoder "mf://tmp*jpg" -mf fps=1 -o '+name_movie+' -ovc lavc -lavcopts vcodec=msmpeg4v2:vbitrate=800')
#os.system('mencoder "mf://*.jpg" -mf fps=1 -o '+name_movie+' -ovc lavc -lavcopts vcodec=msmpeg4v2:vbitrate=800')
#os.system('vlc '+name_movie)
In [ ]: