In [63]:
%matplotlib inline
In [129]:
import numpy as np
import pandas as pd
# 統計用ツール
import statsmodels.api as sm
import statsmodels.tsa.api as tsa
from patsy import dmatrices
# 自作の空間統計用ツール
from spatialstat import *
#描画
import matplotlib.pyplot as plt
from pandas.tools.plotting import autocorrelation_plot
In [67]:
df = pd.read_csv('bukken_data.csv')
In [68]:
df.columns
Out[68]:
In [118]:
S = np.matrix(S_matrix(df, 10, 0.5))
In [159]:
vars = ['pay', 'square', 'k', 'lk', 'dk', 'sdk', 'sldk', 'south_direction_dummy', 'building_year',
'new_dummy', 'mansyon_dumy', 'teiki_syakuya_dummy', 'walk_minute_dummy', 'r', 'rc_dummy', 'room_nums']
eq = fml_build(vars)
y, X = dmatrices(eq, data=df, return_type='dataframe')
logy = np.log(y)
model = sm.OLS(logy, X, intercept=True)
results = model.fit()
print(results.summary())
なお空間統計でSEMを考えても、OLSやGLSは空間相関の有無に関わらず不偏であり、したがって汎化にはあまり関係ない。