In [48]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm
iris = datasets.load_iris()
In [10]:
features = iris.data
target = iris.target
target_names = iris.target_names
labels = target_names[target]
In [41]:
iris_list = []
for i in range(len(features)):
iris_list.append([labels[i], features[i]])
In [58]:
setosa_x = []
setosa_y = []
virginica_x = []
virginica_y = []
versicolor_x = []
versicolor_y = []
for i in range(len(iris_list)):
if iris_list[i][0] == 'setosa':
setosa_x.append(iris_list[i][1][1])
setosa_y.append(iris_list[i][1][2])
elif iris_list[i][0] == 'virginica':
virginica_x.append(iris_list[i][1][1])
virginica_y.append(iris_list[i][1][2])
else:
versicolor_x.append(iris_list[i][1][1])
versicolor_y.append(iris_list[i][1][2])
plt.plot(setosa_x, setosa_y, 'ro')
plt.plot(virginica_x, virginica_y, 'bo')
plt.plot(versicolor_x,versicolor_y, 'go')
Out[58]:
In [22]:
print
Out[22]:
In [52]:
target_names
Out[52]:
In [ ]:
etosa_x.append(iris_list[i][1][1])
setosa_y.append(iris_list[i][1][2])