In [ ]:
using Dynare
# Create a model object
m =
@modfile begin
@var y c k a h b
@varexo e u
@parameters beta rho alpha delta theta psi tau
@model begin
c*theta*h^(1+psi) = (1-alpha)*y
k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1)))*(exp(b(+1))*alpha*y(+1)+(1-delta)*k))
y = exp(a)*(k(-1)^alpha)*(h^(1-alpha))
k = exp(b)*(y-c)+(1-delta)*k(-1)
a = rho*a(-1)+tau*b(-1) + e
b = tau*a(-1)+rho*b(-1) + u
end
end
# Do some preliminary computations
compute_model_info(m)
# Define a calibration and some starting values for the nonlinear solver
calib = [
:alpha => 0.36,
:rho => 0.95,
:tau => 0.025,
:beta => 0.99,
:delta => 0.025,
:psi => 0.0,
:theta => 2.95
]
initval = [
:y => 1.08068253095672,
:c => 0.80359242014163,
:h => 0.29175631001732,
:k => 11.08360443260358,
:a => 0.0,
:b => 0.0,
:e => 0.0,
:u => 0.0
]
# Compute and print the steady state for the given calibration
s = steady_state(m, calib, initval)
print_steady_state(m, s)
# Compute and print eigenvalues and first order decision rules
(gy, gu, eigs) = decision_rules(m, calib, s)
println("Eigenvalues: ", eigs)
println()
print_decision_rules(m, gy, gu)
In [ ]: