In [1]:
import pandas as pd
mroz = pd.read_csv("mroz.csv", names = ('inlf', 'hours', 'kidslt6','kidsge6', 'age', 'educ','wage', 'repwage', 'hushrs','husage','huseduc', 'huswage', 'faminc','mtr', 'motheduc', 'fatheduc','unem', 'city', 'exper','nwifeinc', 'lwage', 'expersq'))

In [2]:
mroz = mroz.dropna()
mroz.index=[i for i in range(0, 753)]

In [3]:
mroz


Out[3]:
inlf hours kidslt6 kidsge6 age educ wage repwage hushrs husage ... faminc mtr motheduc fatheduc unem city exper nwifeinc lwage expersq
0 1 1610 1 0 32 12 3.3540 2.65 2708 34 ... 16310 0.7215 12 7 5.0 0 14 10.910060 1.210154 196
1 1 1656 0 2 30 12 1.3889 2.65 2310 30 ... 21800 0.6615 7 7 11.0 1 5 19.499980 0.3285121 25
2 1 1980 1 3 35 12 4.5455 4.04 3072 40 ... 21040 0.6915 12 7 5.0 0 15 12.039910 1.514138 225
3 1 456 0 3 34 12 1.0965 3.25 1920 53 ... 7300 0.7815 7 7 5.0 0 6 6.799996 0.0921233 36
4 1 1568 1 2 31 14 4.5918 3.60 2000 32 ... 27300 0.6215 12 14 9.5 1 7 20.100060 1.524272 49
5 1 2032 0 0 54 12 4.7421 4.70 1040 57 ... 19495 0.6915 14 7 7.5 1 33 9.859054 1.55648 1089
6 1 1440 0 2 37 16 8.3333 5.95 2670 37 ... 21152 0.6915 14 7 5.0 0 11 9.152048 2.12026 121
7 1 1020 0 0 54 12 7.8431 9.98 4120 53 ... 18900 0.6915 3 3 5.0 0 35 10.900040 2.059634 1225
8 1 1458 0 2 48 12 2.1262 0.00 1995 52 ... 20405 0.7515 7 7 3.0 0 24 17.305000 0.7543364 576
9 1 1600 0 2 39 12 4.6875 4.15 2100 43 ... 20425 0.6915 7 7 5.0 0 21 12.925000 1.544899 441
10 1 1969 0 1 33 12 4.0630 4.30 2450 34 ... 32300 0.5815 12 3 5.0 0 15 24.299950 1.401922 225
11 1 1960 0 1 42 11 4.5918 4.58 2375 47 ... 28700 0.6215 14 7 5.0 0 14 19.700070 1.524272 196
12 1 240 1 2 30 12 2.0833 0.00 2830 33 ... 15500 0.7215 16 16 5.0 0 0 15.000010 0.7339532 0
13 1 997 0 2 43 12 2.2668 3.50 3317 46 ... 16860 0.7215 10 10 7.5 1 14 14.600000 0.8183691 196
14 1 1848 0 1 43 10 3.6797 3.38 2024 45 ... 31431 0.5815 7 7 7.5 1 6 24.630910 1.302831 36
15 1 1224 0 3 35 11 1.3472 0.00 1694 38 ... 19180 0.7215 16 10 7.5 1 9 17.531030 0.2980284 81
16 1 1400 0 2 43 12 3.2143 4.00 2156 45 ... 18600 0.6915 10 7 7.5 1 20 14.099980 1.16761 400
17 1 640 0 5 39 12 5.1750 2.25 2250 40 ... 19151 0.7215 12 12 7.5 1 6 15.839000 1.643839 36
18 1 2000 0 0 45 12 2.0000 2.30 2024 51 ... 18100 0.6915 7 7 5.0 1 23 14.100000 0.6931472 529
19 1 1324 0 4 35 12 7.5529 3.94 2123 40 ... 20300 0.6915 12 7 5.0 0 9 10.299960 2.021932 81
20 1 2215 0 2 42 16 3.5052 3.30 4160 48 ... 30419 0.6215 10 16 7.5 0 5 22.654980 1.254248 25
21 1 1680 0 0 30 12 3.5714 3.80 2000 35 ... 14090 0.7215 12 10 3.0 0 11 8.090048 1.272958 121
22 1 1600 0 0 48 13 3.2500 3.26 2420 52 ... 22679 0.6615 7 3 5.0 1 18 17.479000 1.178655 324
23 1 800 0 0 45 12 3.2500 2.20 1150 53 ... 12160 0.7215 7 7 11.0 0 15 9.560000 1.178655 225
24 1 1955 1 1 31 12 2.1545 2.30 2024 31 ... 12487 0.7515 12 7 5.0 1 4 8.274953 0.7675587 16
25 1 660 0 2 43 17 3.7879 0.00 1904 43 ... 29850 0.5815 16 14 9.5 1 21 27.349990 1.331812 441
26 1 525 0 0 59 12 4.0000 3.18 2448 53 ... 18100 0.6915 3 7 9.5 1 31 16.000000 1.386294 961
27 1 1904 0 3 32 12 4.7269 6.07 2000 33 ... 26000 0.6615 3 7 11.0 1 9 16.999980 1.55327 81
28 1 1516 1 0 31 17 7.2559 6.00 2390 30 ... 26100 0.6215 12 12 5.0 0 7 15.100060 1.981815 49
29 1 346 0 0 42 12 5.8671 6.39 1920 47 ... 17730 0.7215 12 12 9.5 0 7 15.699980 1.76936 49
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
723 0 0 0 2 41 12 0.0000 0.00 2165 46 ... 12400 0.7715 7 7 7.5 0 18 12.400000 . 324
724 0 0 0 2 49 5 0.0000 0.00 2230 43 ... 6531 0.7815 0 0 7.5 0 7 6.531000 . 49
725 0 0 0 0 59 8 0.0000 0.00 1995 55 ... 22422 0.6915 3 7 11.0 1 15 22.422000 . 225
726 0 0 0 0 58 13 0.0000 0.00 2025 57 ... 22200 0.6615 7 7 11.0 1 7 22.200000 . 49
727 0 0 0 3 41 12 0.0000 0.00 2450 48 ... 77000 0.4415 7 14 14.0 1 8 77.000000 . 64
728 0 0 0 2 45 12 0.0000 0.00 2160 45 ... 88000 0.4415 10 10 14.0 1 8 88.000000 . 64
729 0 0 1 1 30 14 0.0000 0.00 1715 32 ... 26040 0.6215 12 10 11.0 0 3 26.040000 . 9
730 0 0 0 1 41 12 0.0000 0.00 3018 42 ... 63500 0.4415 7 7 7.5 1 10 63.500000 . 100
731 0 0 2 0 30 12 0.0000 0.00 2216 33 ... 12100 0.7515 10 10 7.5 0 9 12.100000 . 81
732 0 0 0 1 53 12 0.0000 0.00 2499 54 ... 17505 0.7515 12 7 7.5 1 24 17.505000 . 576
733 0 0 0 0 31 12 0.0000 0.00 2250 37 ... 18000 0.6915 10 7 7.5 0 12 18.000000 . 144
734 0 0 0 2 43 14 0.0000 0.00 2116 44 ... 28069 0.6615 12 12 11.0 1 2 28.069000 . 4
735 0 0 1 1 31 12 0.0000 0.00 2016 30 ... 14000 0.7515 12 14 14.0 1 6 14.000000 . 36
736 0 0 0 0 51 12 0.0000 0.00 2470 60 ... 8117 0.7515 10 3 7.5 1 18 8.117000 . 324
737 0 0 0 0 43 9 0.0000 0.00 1640 45 ... 11895 0.7715 7 7 5.0 1 17 11.895000 . 289
738 0 0 1 2 31 14 0.0000 0.00 2016 34 ... 45250 0.4915 16 16 5.0 1 7 45.250000 . 49
739 0 0 0 0 48 11 0.0000 0.00 2185 48 ... 31106 0.6915 7 10 9.5 1 6 31.106000 . 36
740 0 0 1 1 31 12 0.0000 0.00 800 33 ... 4000 0.8015 12 7 9.5 1 10 4.000000 . 100
741 0 0 0 1 44 12 0.0000 0.00 3022 46 ... 40500 0.5815 7 7 7.5 1 5 40.500000 . 25
742 0 0 0 1 48 11 0.0000 0.00 1512 50 ... 21620 0.7215 10 7 7.5 1 7 21.620000 . 49
743 0 0 0 1 53 12 0.0000 0.00 2677 53 ... 23426 0.7215 0 0 7.5 1 11 23.426000 . 121
744 0 0 0 3 42 10 0.0000 2.75 3150 44 ... 26000 0.6615 3 3 11.0 1 14 26.000000 . 196
745 0 0 2 6 39 12 0.0000 0.00 1430 34 ... 7840 0.9415 7 0 9.5 1 5 7.840000 . 25
746 0 0 1 2 32 10 0.0000 0.00 3307 36 ... 6800 0.7915 7 3 7.5 0 2 6.800000 . 4
747 0 0 0 2 36 12 0.0000 0.00 3120 39 ... 5330 0.7915 7 12 14.0 0 4 5.330000 . 16
748 0 0 0 2 40 13 0.0000 0.00 3020 43 ... 28200 0.6215 10 10 9.5 1 5 28.200000 . 25
749 0 0 2 3 31 12 0.0000 0.00 2056 33 ... 10000 0.7715 12 12 7.5 0 14 10.000000 . 196
750 0 0 0 0 43 12 0.0000 0.00 2383 43 ... 9952 0.7515 10 3 7.5 0 4 9.952000 . 16
751 0 0 0 0 60 12 0.0000 0.00 1705 55 ... 24984 0.6215 12 12 14.0 1 15 24.984000 . 225
752 0 0 0 3 39 9 0.0000 0.00 3120 48 ... 28363 0.6915 7 7 11.0 1 12 28.363000 . 144

753 rows × 22 columns


In [5]:
mroz.to_csv( 'mroz.csv' )