In [103]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import math

from basic_artificial_market import ArtificialMarket

In [104]:
import numpy as np
import matplotlib.pyplot as plt
import math

class ArtificialMarket():
    def __init__(self, num_player=1000, fdmtl=10000.0, ganma=10000, sigma=0.06, P_sigma=30):
        self.num_player = num_player
        self.random_state = np.random.RandomState()
        self.weight = self.weight()
        self.fdmtl = fdmtl
        self.ganma = ganma
        self.sigma = sigma
        self.P_sigma = P_sigma
    
    def weight(self, w_1_max=1, w_2_max=10, w_3_max=1):
        num_player = self.num_player
        weight_1 = np.zeros(num_player)
        weight_2 = np.zeros(num_player)
        weight_3 = np.zeros(num_player)
        random_state = self.random_state
        for i in range(num_player):
            weight_1[i] = random_state.uniform()*w_1_max
            weight_2[i] = random_state.uniform()*w_2_max
            weight_3[i] = random_state.uniform()*w_3_max
        weight = [weight_1, weight_2, weight_3]
        return weight

    def one_market_model(self, w, past_data=None, b_limit=None, s_limit=None):
        num_player = self.num_player
        sigma = self.sigma
        P_sigma = self.P_sigma
        P_f = self.fdmtl
        
        if past_data is None:
            past_data = [P_f]
        if b_limit is None:
            b_limit = []
        if s_limit is None:
            s_limit = []
            
        P_t_1 = past_data[-1]
        w_1 = w[0]
        w_2 = w[1]
        w_3 = w[2]
        ganma = self.ganma
        r_t_e = np.zeros(num_player)
        
            
        for i in range(num_player):
            P_t_1 = past_data[-1]
            if len(past_data) < ganma:
                r_t_h = np.log10(P_t_1/np.random.choice(past_data))
            else:
                past_data_ganma = past_data[-ganma]
                r_t_h = np.log10(P_t_1/past_data_ganma)
            e_t = np.random.normal(0, sigma)
            r_t_e[i] = (w_1[i]*np.log10(P_f/P_t_1) + w_2[i]*r_t_h + w_3[i]*e_t)/(w_1[i] + w_2[i] + w_3[i])
            print r_t_h
            P_e = P_t_1*math.exp(r_t_e[i])
            P_o = np.random.normal(P_e, P_sigma)
            if P_e > P_o:
                if len(s_limit) > 0 and min(s_limit) < P_o: 
                    P_t = np.min(s_limit)
                    s_limit = np.delete(s_limit, np.argmin(s_limit))
                else:
                    b_limit = np.append(b_limit, P_o)
                    P_t = P_t_1
            else:
                if len(b_limit) > 0 and max(b_limit) > P_o:
                    P_t = np.max(b_limit)
                    b_limit = np.delete(b_limit, np.argmax(b_limit))
                else:
                    s_limit = np.append(s_limit, P_o)
                    P_t = P_t_1
            past_data.append(P_t)
            print P_t
        t = len(past_data)
        print b_limit
        return t, past_data, b_limit, s_limit
        
    def one_market_simulation(self, t_max=100000):
        w = self.weight
        t, past_data, b_limit, s_limit = self.one_market_model(w)
        while t < t_max:
            t, past_data, b_limit, s_limit = self.one_market_model(w, past_data, b_limit, s_limit)
        return past_data
    
    def two_market_model(self, w, T_A=0.0, T_B=0.0, past_data=None, b_1=None, s_1=None, b_2=None, s_2=None):
        w = self.weight
        
        if b_1 == None and s_1==None and b_2==None and s_2==None:
            t1, past_data1, b_limit1, s_limit1 = self.one_market_model(w, past_data=None, b_limit=None, s_limit=None)
            t2, past_data2, b_limit2, s_limit2 = self.one_market_model(w, past_data=None, b_limit=None, s_limit=None)
        else:
            b_limit1, s_limit1, b_limit2, s_limit2 = b_1, s_1, b_2, s_2
        
        num_player = self.num_player
        sigma = self.sigma
        P_sigma = self.P_sigma
        P_f = self.fdmtl
        
        if past_data is None:
            past_data = [P_f]
        
        P_t_1 = past_data[-1]
        w_1 = w[0]
        w_2 = w[1]
        w_3 = w[2]
        ganma = self.ganma
        r_t_e = np.zeros(num_player)
        
        if len(past_data) < ganma:
            r_t_h = np.log10(P_t_1/np.random.choice(past_data))
        else:
            past_data_ganma = past_data[-ganma:]
            r_t_h = np.log10(P_t_1/np.random.choice(past_data))
            
        for i in range(num_player):
            for limit in [b_limit1, b_limit2]:
                if limit == []:
                    limit.append(0)
            for limit in [s_limit1, s_limit2]:
                if limit == []:
                    limit.append(20000)
            b_A, s_A = max(b_limit1), min(s_limit1)
            b_B, s_B = max(b_limit2), min(s_limit2)
            if T_A+T_B == 0:
                W_A = 0.5
            else:
                W_A = T_A/(T_A+T_B)
            W_B = 1.0 - W_A
            e_t = np.random.normal(0, sigma)
            r_t_e[i] = (w_1[i]*np.log10(P_f/P_t_1) + w_2[i]*r_t_h + w_3[i]*e_t)/(w_1[i] + w_2[i] + w_3[i])
            P_e = P_t_1*math.exp(r_t_e[i])
            P_o = np.random.normal(P_e, P_sigma)
            if P_e > P_o:
                if s_A < P_o or s_B < P_o:
                    if s_A < s_B:
                        P_t = s_A
                        s_limit1.remove(s_A)
                        T_A += 1.0
                    elif s_A == s_B:
                        market = np.random.choice(['A', 'B'], [W_A, W_B])
                        if market == 'A':
                            P_t = s_A
                            s_limit1.remove(s_A)
                            T_A += 1.0
                        else:
                            P_t = s_B
                            s_limit2.remove(s_B)
                            T_B += 1.0       
                    else:
                        P_t = s_B
                        s_limit2.remove(s_B)
                        T_B += 1.0              
                else:
                    market = np.random.choice(['A', 'B'], [W_A, W_B])
                    if market == 'A':
                        P_t = P_t_1
                        b_limit1.append(P_o)
                    else:
                        P_t = P_t_1
                        b_limit2.append(P_o)
            else:
                if b_A > P_o or b_B > P_o:
                    if b_A > b_B:
                        P_t = b_A
                        b_limit1.remove(b_A)
                        T_A += 1.0
                    elif s_A == s_B:
                        market = np.random.choice(['A', 'B'], [W_A, W_B])
                        if market == 'A':
                            P_t = b_A
                            b_limit1.remove(b_A)
                            T_A += 1.0
                        else:
                            P_t = b_B
                            b_limit2.remove(b_B)
                            T_B += 1.0       
                    else:
                        P_t = b_B
                        b_limit2.remove(b_B)
                        T_B += 1.0              
                else:
                    market = np.random.choice(['A', 'B'], [W_A, W_B])
                    if market == 'A':
                        P_t = P_t_1
                        s_limit1.append(P_o)
                    else:
                        P_t = P_t_1
                        s_limit2.append(P_o)
            past_data.append(P_t)
        t = len(past_data)
        return t, T_A, T_B, past_data, b_limit1, s_limit1, b_limit2, s_limit2

    def two_market_simulation(self, t_max=100000):
        w = self.weight
        t, T_A, T_B, past_data, b_1, s_1, b_2, s_2 = self.two_market_model(w)
        share = []
        while t < t_max:
            t, T_A, T_B, past_data, b_1, s_1, b_2, s_2 = self.two_market_model(w, T_A, T_B, past_data, b_1, s_1, b_2, s_2)
            share.append(T_A/(T_A+T_B))
        return past_data, T_A, T_B, share

    def plot_share(self, share):
        share_B = []
        for i in range(len(share)):
            share_B.append(1.0-share[i])
        plt.plot(share)
        plt.plot(share_B)

In [105]:
AM = ArtificialMarket(ganma=10000)

In [106]:
w = AM.weight
t, past_data, b_limit, s_limit = AM.one_market_model(w)


0.0
10000.0
0.0
10000.0
0.0
10000.0
0.0
10030.1641448
0.00130804035643
10030.1641448
0.0
10030.1641448
0.00130804035643
10140.9871822
0.0060802337857
10140.9871822
0.0
10159.5378266
0.00687395165608
10159.5378266
0.00687395165608
10146.0620889
0.00629751565588
10146.0620889
0.000217281870176
10146.0620889
0.000217281870176
10146.0620889
0.0
10146.0620889
0.0
10146.0620889
0.00629751565588
10146.0620889
0.0
10185.8828678
0.00112472605823
10185.8828678
0.00170116205843
10185.8828678
0.00112472605823
10116.0528448
0.00501108936826
10116.0528448
0.00501108936826
10116.0528448
0.0
10116.0528448
-0.00298758834605
10116.0528448
0.0
10116.0528448
-0.00186286228782
10116.0528448
-0.00186286228782
10116.0528448
0.0
10116.0528448
-0.00128642628762
10110.8006736
0.00478554870149
10110.8006736
-0.000225540666765
10110.8006736
-0.00151196695439
10110.8006736
-0.000225540666765
10110.8006736
-0.00151196695439
10110.8006736
0.00478554870149
10104.7040116
-0.00347508109187
10104.7040116
-0.00177391903344
10104.7040116
0.0
10104.7040116
0.0
10097.2281911
0.00420217115754
10097.0349307
-0.00188637508072
10097.0349307
-0.000817230663273
10097.0349307
0.0
10097.0349307
-0.000591689996508
10110.9978978
8.47139115598e-06
10110.9978978
-0.000217069275609
10110.9978978
0.0
10110.9978978
0.000600161387664
10114.8161906
0.000172446351973
10114.8161906
0.00495799505347
10114.8161906
0.0
10114.8161906
-5.30943147922e-05
10117.5571054
0.000881805607598
10117.5571054
0.000881805607598
10117.5571054
0.000881805607598
10117.5571054
0.000552067690148
10117.5571054
0.00029011561109
10117.5571054
-0.00179828734349
10117.5571054
0.0
10094.7008514
-0.000108717665263
10094.7008514
-0.000917635875985
10094.7008514
-0.00098221082031
10068.4530336
-0.00333476710774
10068.4530336
-0.00113070494414
10124.4589453
-0.00092569200005
10124.4589453
0.00127837016356
10124.4589453
0.0
10066.167718
-0.00122929135082
10066.167718
-0.00343335351443
10066.167718
-0.00221150217113
10066.167718
-0.00221150217113
10066.167718
0.00286416214145
10066.167718
-0.00343335351443
10066.167718
0.00155612178502
10066.167718
-0.00250766151438
10131.2508798
-0.000417163877159
10131.2508798
-0.000417163877159
10131.2508798
0.00058740559596
10096.6763891
-0.00083265255728
10096.6763891
-0.000615583281671
10101.1230052
-0.00171057407754
10062.8745324
-0.00235360653164
10062.8745324
-0.00264976587488
10062.8745324
-0.00145637903003
10119.2682255
0.00013801828321
10119.2682255
0.00228494551002
10119.2682255
0.000955248946483
10119.2682255
0.000191112598003
10119.2682255
0.000625511029033
10119.2682255
-0.000513962257075
10119.2682255
0.00242704987052
10133.4954449
-0.00111467504582
10131.9462306
0.00569287636032
10131.9462306
0.000734881306856
10119.4347122
0.0003707040947
10119.4347122
-0.00284242491811
10119.4347122
8.058848361e-05
10119.4347122
7.14514472478e-06
10119.4347122
0.0
10119.4347122
0.00219350424806
10119.4347122
0.00106279930392
10075.8041953
-0.000914139511034
10098.7454253
7.35656997149e-05
10098.7454253
-0.000518124296793
10098.7454253
-0.000526595687949
10112.4088987
-0.00201932951777
10057.6684843
-0.00169654217634
10057.6684843
-0.00187234317953
10057.6684843
-0.00229670356401
10057.6684843
-0.00380019912724
10055.5193488
-0.00238104268938
10055.5193488
-0.00274460163936
10055.5193488
0.0
10058.6228228
-0.00375899232987
10053.3074674
-0.00284728770216
10053.3074674
-0.000229558231975
10084.3370353
-0.00150175555948
10085.306759
-0.00138655187801
10085.306759
0.000726363886435
10132.9375404
0.00333085965038
10132.9375404
0.000777370609027
10134.0509273
0.000120012539777
10134.0509273
0.00291892030687
10134.0509273
0.000771993080063
10134.0509273
0.000120012539777
10097.6708924
-0.000854452435516
10097.6708924
0.000532099442498
10097.6708924
-0.000927895774402
10097.6708924
0.00135704973562
10097.6708924
2.73531720815e-05
10097.6708924
-0.000789877491191
10097.6708924
0.00125846332893
10097.6708924
-0.000935040919127
10097.6708924
0.0
10097.6708924
2.73531720815e-05
10092.4945117
-0.00107714239831
10084.6976455
-0.00212020051005
10084.6976455
1.55298462874e-05
10078.2956707
-0.00140692482793
10078.2956707
-0.00162399410354
10078.2956707
-0.00227597464383
10078.2956707
-0.00227597464383
10078.2956707
0.0
10078.2956707
0.000889778736078
10065.3628659
-0.00346807942139
10065.3628659
0.0
10065.3628659
-0.00218165313377
10065.3628659
-0.0023268165617
10065.3628659
-0.00169416038794
10065.3628659
-0.00126401725778
10065.3628659
-0.00346807942139
10060.0536103
-0.000786800171191
10060.0536103
-0.00254881255794
10072.548028
0.000176598323775
10072.548028
-0.00181864818156
10072.548028
-0.00108186500516
10072.548028
-0.00187174249635
10072.548028
-0.00108186500516
10072.548028
0.000417289090964
10071.496466
0.00309400467694
10071.496466
-0.00259887168339
10071.496466
-0.00170001541571
10071.496466
-0.0014295919455
10071.496466
-0.00298622910877
10071.496466
0.000264568442443
10071.496466
-0.000293090587783
10067.8672906
-0.00213818204437
10067.8672906
-0.00143217743995
10067.8672906
-0.00213818204437
10067.8672906
0.000215424487268
10059.8740839
-0.000501459844043
10059.8740839
-0.00241854453537
10053.9484134
-0.00244889615838
10069.5776361
-8.27500282334e-05
10069.5776361
0.000513938120061
10069.5776361
-0.00272411101379
10069.5776361
0.000289196867756
10069.5776361
-0.00236056900713
10069.5776361
-8.27500282334e-05
10069.5776361
-0.00265181525984
10069.5776361
-0.00328626100718
10069.5776361
-0.00277182779962
10052.5342216
-0.000446497546875
10052.5342216
0.000967519877645
10059.7583021
-0.00242354297459
10059.7583021
-0.00314781926883
10050.5105421
-0.000533934335848
10050.5105421
-0.00181039846917
10050.3145303
-0.0028960108528
10050.3145303
-0.00234394316265
10050.3145303
-0.000684508681666
10050.3145303
-0.000684508681666
10050.3145303
-0.00297659933641
10050.3145303
-0.00283143590848
10046.5966628
-0.0031301405108
10044.7733485
-0.00107111292915
10044.7733485
-0.00372292818899
10042.5871813
-0.00331064219672
10042.1814863
-0.00126593882628
10056.8749222
-0.000129496011166
10041.6587423
-0.00241575373823
10034.9679455
-0.0032780305269
10033.5067757
-0.00462748549322
10033.5067757
-0.0021946037995
10033.5067757
0.000144707936057
10033.5067757
-0.000566218848184
10033.5067757
-0.00654592942183
10033.5067757
-0.000883904250627
10033.5067757
-0.0007269051673
10033.5067757
-0.00137668794201
10029.5627925
-0.00293921015754
10029.5627925
-0.00158216042193
10029.5627925
-0.00350354698197
10029.3049682
-0.00351471128863
10029.3049682
-0.00451224503546
10029.3049682
-0.00155859882163
10029.3049682
-0.00182316726407
10027.2546937
-0.00382904314558
10026.4945852
-0.00364489648224
10026.4945852
-0.00380887144306
10026.4945852
-0.00103052984938
10026.4945852
-0.00451394629814
10026.4945852
-0.00392654070218
10026.4945852
-0.00178835865781
10024.1839536
-0.00188845448076
10022.5405507
-0.00266953003088
10022.2191052
-0.00153342349754
10017.2348903
-0.00440839529974
10015.0660854
-0.000798928917555
10015.0660854
-0.0047180042809
10015.0660854
-0.00386977724751
10015.0660854
0.0
10010.1295311
-0.00265430738954
10010.1295311
-0.000868343069032
10010.1295311
0.0
10010.1295311
-0.00257155736131
10009.5002178
-0.00385503104929
10009.5002178
-0.00459869601285
10009.5002178
-0.00588512230047
10009.5002178
-0.000736730254995
10009.5002178
-0.00459869601285
10007.2773735
-0.00251349886441
10007.1766785
-0.00083755621119
10016.6889863
-0.0042869000358
10016.6889863
-0.00145546412733
10016.6889863
-0.00266290593226
10016.6889863
7.03699575266e-05
10028.2115399
-0.00378760277104
10028.2115399
-0.00299772527985
10028.2115399
-0.00392562105425
10004.5245659
-0.00402475691567
10000.6657575
-0.00626860313911
9999.68406838
-0.00219337441229
9999.68406838
-0.00310772562944
9999.68406838
-0.00129572267203
9999.68406838
-0.00567679086105
9998.93852964
-0.00424827267625
9998.93852964
-0.00235506661274
10012.7209046
-0.00238537149342
10012.7209046
-0.00258723609712
9997.29235832
-0.0051286966749
9997.29235832
-0.00519327161923
9997.29235832
-0.0051286966749
10004.5864555
-0.00281211308176
10004.5864555
-0.00494996608453
10006.5451902
-0.0053789088925
10006.5451902
-0.00310293424868
10006.5451902
-0.00280984366089
9995.41061965
-0.00499338009924
9995.41061965
-0.000639057293981
9995.41061965
-0.00142284660381
9995.41061965
-0.00165210829907
9995.41061965
-0.0033387068785
9995.41061965
-0.00499338009924
9993.88669437
-0.00312974081798
9993.88669437
-0.00522357373
9993.74257258
-0.00336584635739
9993.74257258
-0.005934911589
9985.9113117
-0.00263126252238
9985.9113117
-0.000808750343105
9985.9113117
0.0
9985.9113117
-0.00288785561578
9985.9113117
-0.000598574429206
9985.9113117
-0.000598574429206
9985.9113117
-0.00568795969429
9985.9113117
-0.00370630005864
9985.9113117
-0.0057685481779
9985.9113117
-0.00244036123236
9985.9113117
-0.000598574429206
9985.9113117
-0.00092823275179
9992.10124647
-0.00152522028007
9992.10124647
-0.00549228170886
9992.10124647
-0.00535426342565
9992.10124647
-0.00513719415004
9992.10124647
-0.00253129750249
9983.59413061
-0.00679331673782
9983.59413061
-0.00216583124459
9979.88064141
-0.00774860446554
9979.88064141
-0.00373881495091
9977.08710337
-0.00600732559476
9977.08710337
-0.0061524890227
9977.08710337
-0.000796876219918
9977.08710337
-0.000996236226505
9977.08710337
-0.00600732559476
9976.52011144
-0.00580646632638
9975.18844126
-0.00615455562033
9974.54895301
-0.00183092323423
9974.54895301
-0.00312570104244
9974.15968472
-0.00100607576943
9972.57384728
-0.00428674371616
9972.57384728
-0.000580443657517
9999.40271779
-0.00424715228865
9999.40271779
-0.00289010255304
9999.40271779
-5.48529283586e-05
9999.40271779
-0.00421979911657
9972.4708896
-0.00148138377073
9972.4708896
-0.00338534619978
9968.52892099
-0.00386624333602
9965.46230422
-0.00191494265077
9960.52288045
-0.00651188265944
9959.00367982
-0.00630770378103
9959.00367982
-0.00747698351892
9959.00367982
-0.0097827848729
9959.00367982
-0.00323685545108
9959.00367982
-0.00438440225212
9959.00367982
-0.00747698351892
9957.1267508
-0.00495996909392
9957.1267508
-0.00458802219793
9957.1267508
-0.000869728190482
9957.1267508
-0.000759230515215
9957.1267508
-0.00613338882169
9957.1267508
-0.0098646421313
9965.66788802
-0.0014935900533
9965.66788802
-0.00264271366371
9965.66788802
-0.00193328734069
9954.69283485
-0.00319562275497
9954.41047263
-0.000963537355308
9954.41047263
-0.000118490563209
9954.28286236
-0.00651361906332
9954.28286236
-0.00713913009236
9953.96148722
-0.00418369737334
9953.63611987
-0.00654183664836
9953.63611987
-0.00429380025999
9953.63611987
-0.002334177396
9950.74872694
-0.00279805965973
9950.74872694
-0.00901819194087
9950.74872694
-0.00901819194087
9949.09102729
-0.00531060029967
9949.09102729
-0.00467964444446
9949.01760029
-0.00523105549454
9949.01760029
-0.00531380552277
9948.8305082
0.0
9948.8305082
-0.00472528439454
9956.04012641
-0.00463541947849
9956.04012641
-0.00450090809121
9956.04012641
-0.00171400169095
9956.04012641
-0.000419771644245
9979.81231797
-0.00218566640738
9979.81231797
-0.000851685639369
9979.81231797
0.000906481107639
9979.81231797
-0.00214846346382
9979.81231797
-0.000906538567727
9979.81231797
-0.00497107954323
9979.81231797
0.00135034181494
9979.81231797
-0.00233037434344
9975.82105803
-0.00105134964629
9975.82105803
-0.000338266694181
9987.45007651
-0.00570163134287
9987.45007651
-0.00506897516911
9987.45007651
-0.0011991979216
9987.45007651
0.00147286147924
9987.45007651
-0.000273536866219
9987.45007651
-0.00126956787913
9987.45007651
-0.00294988455879
9974.77212509
-0.00909569475387
9974.77212509
-0.00624612469103
9974.77212509
-0.00531822891663
9989.01808457
-0.000431099085487
9989.31203244
-0.00161354437363
9989.31203244
-0.00412730270149
9989.31203244
0.000147874618491
9989.31203244
0.00140154365377
9989.31203244
0.0
9989.31203244
0.000556496861672
9989.31203244
-0.00355842544015
9989.31203244
-0.00173525817608
9989.31203244
-0.00340190303143
9989.31203244
-0.00161354437363
9989.56542865
-0.00523895297239
9989.56542865
-0.00467461614797
9989.56542865
-0.000482316787672
9989.56542865
0.000743818483788
9989.56542865
-0.00552906858348
9995.01709474
0.00180178126611
9995.01709474
-0.00136558237022
9995.01709474
-0.0030458949943
10000.1877315
0.00192151469553
10000.1877315
0.00088577904894
9972.67508598
-0.00160072358457
9972.67508598
-0.0013874717961
9969.07091704
-0.00428279681557
9969.07091704
-0.000467688496401
9969.07091704
-0.00420947668881
9969.07091704
-0.00635640391561
9969.07091704
-0.000470661737892
9969.07091704
-0.00232313660847
9963.50807632
-0.000874639875028
9963.50807632
-0.00695954648297
9963.50807632
-0.00418801792067
9963.50807632
-0.00137126406733
9974.26922916
-0.00131805488924
9974.26922916
-0.00591293341495
9974.26922916
-0.00226803693271
9974.26922916
0.000865541657895
9974.26922916
-0.000241287271348
9956.57575921
-0.00482747964532
9956.57575921
-0.00303912098751
9956.57575921
0.000254242907697
9977.91340575
-0.00139996673297
9977.91340575
0.000953092251969
9977.91340575
-0.00574581814707
9954.70384906
-0.00162848158251
9954.70384906
-0.00698274500816
9954.70384906
-0.002935548671
9954.70384906
-0.00312077925031
9980.95245333
0.000132256172552
9976.45253751
-0.00398660778857
9953.25493603
-0.00431043229325
9953.25493603
-0.00044714923204
9953.25493603
-0.00517421893109
9953.25493603
-0.00355086162493
9953.25493603
-0.00157045129596
9986.1569606
-0.000137191302446
9986.1569606
-0.0036956167426
9986.1569606
0.00161818878017
10001.8592741
-0.00251180509184
10001.8592741
-0.00401271375122
10001.8592741
-0.00023519762903
10001.8592741
-0.00414047213602
10001.8592741
0.00209897976697
10003.8285157
0.00135897754126
10003.8285157
0.00213789414193
10003.8285157
0.000509412559419
10003.8285157
-0.00284501614667
10003.8285157
-0.00556912716046
10003.8285157
0.000509412559419
10003.8285157
0.00205623587913
10003.8285157
-0.00210932173204
10003.8285157
-0.00484485086623
10009.2039144
-0.000823949508758
9981.40917221
-0.00265375142521
9981.40917221
-0.00274828254528
9981.40917221
0.00116351481417
9981.40917221
-0.00419523609045
9981.40917221
-0.00581923019399
9981.40917221
-0.000782200414142
9981.40917221
0.000310772496575
9981.40917221
-0.000794419873225
9981.40917221
-0.00122053418114
9981.40917221
-0.000782200414142
9981.40917221
-0.00153233015818
9981.40917221
-0.00576613587919
9981.40917221
0.0
9981.40917221
-0.00136025160052
9981.40917221
0.000380189403432
10011.2488895
-0.000793743222569
10011.2488895
0.000204097480912
10011.2488895
0.000322019994925
10011.2488895
-0.00169139496283
10011.2488895
0.00110055387866
10011.2488895
-0.00252299615175
10011.2488895
0.00167658872611
10016.5482859
-0.0022446596182
10016.5482859
-0.00214607321152
10016.5482859
-0.00242125794198
10016.5482859
0.00191082796916
10016.5482859
0.00272213284348
10016.5482859
0.000718088929932
10016.5482859
0.00263145062747
10016.5482859
-0.000431034680477
10016.5482859
0.000551850427902
10015.491519
0.00253823194975
10015.491519
-0.00219189460869
10015.491519
-0.00385132908968
10015.491519
-0.00215716870173
10015.491519
-7.55899636901e-05
10015.491519
0.00148040835849
10015.491519
0.0025856292303
10015.491519
-0.0043388218355
10015.491519
-0.000780480759723
10015.491519
0.000272730444299
10015.491519
0.00067226753276
10015.491519
-0.00359515687194
10015.491519
0.00128456291447
10015.491519
0.00154989358371
9999.58339481
-0.000690360843143
9999.58339481
0.00195356232951
9999.58339481
-0.000184331812413
9999.58339481
0.00195356232951
9999.58339481
-0.0034051885751
9987.20791425
-0.00127399779298
9984.60441897
0.000208489242318
9984.60441897
-0.0013414043414
9984.60441897
-0.0048903486857
9985.69311878
-0.000702524594089
9985.69311878
-0.00065069736981
9985.69311878
-0.0012940523858
9993.2266593
-0.000460500619217
9993.2266593
-9.49021105997e-05
9993.2266593
-0.00156509953005
9993.2266593
0.0
9993.2266593
0.000251116429488
9993.2266593
0.000261646745858
9993.2266593
-0.00338826679412
9989.38453388
-0.00286577472055
9989.38453388
-0.0054723580767
9984.4958865
-0.00633692751566
9984.22713429
0.000122593176889
9984.22713429
-0.00140363657877
9984.22713429
-0.00351498388333
9983.98606451
-0.00645531045267
9983.98606451
-0.0021487821349
9983.98606451
-0.00565402889588
9981.03899356
-0.00157210521877
9981.03899356
0.000282486179456
10007.6140925
0.00132678623466
10011.0511319
-0.00431434053184
10011.0511319
-0.00489214409502
10011.0511319
0.0023456439778
10011.0511319
0.00109197494252
10011.0511319
-0.000244509771646
10011.0511319
0.00128782038654
10011.0511319
0.000822853618198
9977.57650734
0.00124166223064
9995.59260995
-0.0051494477649
9995.59260995
-0.00315420125957
9995.59260995
0.000616688114294
9995.59260995
0.00085989693486
9995.59260995
-0.00497700141293
9995.59260995
-0.00592681837393
9995.59260995
-0.000177731758931
9995.59260995
-0.000177731758931
9995.59260995
-0.000145351192721
9995.59260995
-0.0044126645885
9983.39878027
-0.00567957598779
10015.0432844
-0.00449627702209
10015.0432844
-1.94369033791e-05
10015.0432844
0.00134886447179
10015.0432844
-0.00165613446465
10015.0432844
0.00279707091418
10016.8874638
0.000421227255575
10016.8874638
6.05271220329e-05
10016.8874638
0.00161042070575
10017.8469727
-0.00205504288173
10017.8469727
0.00189807642884
10017.8469727
-0.0041836017007
9975.69970775
-0.00735414828383
9975.69970775
-0.000939025321305
9975.69970775
-0.00228011922517
9975.69970775
-0.00220575623836
9975.69970775
-0.00233863434747
9986.26101976
-0.001746210203
9975.0338487
-0.0018037108592
9975.0338487
-0.000869163169463
9975.0338487
-0.00105968151768
9974.43801624
-0.00533277602173
9974.43801624
-0.00159124370548
9969.7957193
-0.0024628638834
9969.7957193
-0.00417790241445
9969.7957193
-0.00132189327098
9969.7957193
-0.00365039281611
9969.72933401
-0.00112517938228
9969.72933401
-0.00111727208713
9986.48310791
-0.00102712555192
10003.5504402
0.00149948083852
10003.5504402
-0.00285708835754
10003.5504402
0.00149948083852
9996.98717293
-0.00231051859176
9996.98717293
-0.000619123628932
9996.98717293
-0.00491641383347
9996.98717293
-0.000297103634006
9996.98717293
-0.00314211978068
9996.98717293
-0.000803132664736
9996.98717293
0.00188737489394
9996.98717293
0.000481430249731
10016.9876413
8.33185789902e-05
10016.9876413
0.00265049965146
10016.9876413
-0.000715610338565
10016.9876413
-0.00499822770858
10015.0032779
0.000664816727908
10015.0032779
0.000570356034353
10015.0032779
0.000916674451939
10015.0032779
-0.00449801187606
10015.0032779
0.000916674451939
10015.0032779
-0.000801652517078
10010.1904527
-0.00214520599905
10010.1904527
0.000736602511807
10010.1904527
0.000641700401207
10010.1904527
-0.00227971738633
10004.9265071
-0.000560490551687
10004.9265071
-0.00279735184763
10004.9265071
0.00244187066697
10004.9265071
-0.00547897355925
10004.9265071
0.000133163060024
10004.9265071
0.00123482042596
10004.9265071
-0.000438927828305
10011.1685321
0.000949193289459
10011.1685321
0.00168199528093
10011.1685321
0.000779034643429
10011.1685321
0.00262901281104
10011.1685321
0.00270136814897
10011.1685321
0.000676225237675
10011.1685321
0.000330606235076
10011.1685321
-0.00373643935083
10011.1685321
-0.00320433990833
10011.1685321
0.00160368584854
10006.3381143
-0.000213084886584
10006.3381143
-0.00117757468211
10006.3381143
-0.0020003866237
10006.3381143
-0.00337217848162
9996.77716841
-0.00701394001295
9996.77716841
0.000324432406345
9996.77716841
0.000916644271076
9996.77716841
-0.00286204613782
9996.77716841
0.000545559291966
9996.77716841
0.000405390189803
9999.85699538
-0.000724299586185
9999.85699538
-0.000678478189013
9999.85699538
-0.00800488837056
9999.85699538
-0.00418464746723
10009.7909946
-0.000226086313331
10009.7909946
-0.00029917987038
10009.7909946
0.000719271579262
10009.7909946
0.000555874594051
10010.9086777
0.000816673696351
9996.36094431
0.000295333327089
10018.1834452
0.000980432602928
10018.1834452
0.000760067374722
10018.4548872
-0.00421034245787
9992.75663114
-0.00103277842689
10019.1184244
-0.00336434877815
10019.1184244
-0.00339170195023
10019.1184244
-0.00189254785411
10019.1184244
-0.00045249179269
10019.1184244
0.00152554376925
9990.8076508
-0.00349340693047
9990.8076508
-0.005357397307
9984.77849566
-0.000530700030738
10006.9833264
0.00102475709906
10006.9833264
-0.00197238406934
10006.9833264
0.000149009873568
9993.677744
0.0
9993.677744
0.00053348190385
9993.677744
-0.00110416884871
9993.677744
-0.000992747851809
9993.677744
-0.000143793789901
10010.5482041
0.0
10010.5482041
-0.0053252212035
10010.5482041
-0.000812976168045
10010.5482041
0.00100323979149
10010.5482041
-2.69112814245e-05
10010.5482041
-0.00450013380865
9984.02323999
-0.00606624040126
9982.5567981
-0.00497942198334
9982.5567981
-0.0014120294812
9993.4685681
-0.000956016690627
10020.9289112
0.0016040150832
10021.1897041
0.00138370429436
10021.8529486
-0.000880039832461
10021.8529486
0.00177227374051
10021.8529486
0.00317599388409
10021.8529486
0.00121360469473
10021.8529486
0.000173632665433
10021.8529486
-0.00201472252994
10021.8529486
0.00175616684392
10021.8529486
-0.00342163368997
10021.8529486
0.000490164773378
10021.8529486
0.000781787516166
10021.8529486
0.00141244678141
10021.8529486
0.000468346457387
10021.8529486
-0.00314542747408
10019.628759
0.000114492667875
10019.628759
0.000857841278047
10019.628759
0.000114492667875
10022.4254419
0.0
10022.4254419
0.00205172547167
10023.5211225
-0.00194243864899
10023.6137864
0.000870158486378
10023.6137864
0.00324412562338
10023.6137864
0.0019019508285
10023.9010021
0.00253035888864
10023.9010021
-0.000112354775062
10023.9010021
-0.00115135460975
10023.9010021
0.00123612884193
10023.9010021
0.00214833298001
10024.4044019
-9.05450786657e-05
10024.4044019
-0.000457411034006
10024.4044019
0.00152299929496
10024.4044019
0.00309345059092
10024.6203772
-0.00262117714905
10024.6203772
0.000579676788566
10025.2706644
-0.00468697582271
10015.5400925
-0.00012637312426
10015.5400925
2.10625336771e-06
10015.5400925
0.000873733792715
10015.5400925
-0.00354683809094
10013.7687155
0.00238166359058
10013.7687155
0.000796916438577
10013.7687155
0.00162141567243
10025.2852737
-0.00520077615627
10025.2852737
0.00332470736551
10025.2852737
0.000638878254796
10010.5790605
5.96628188143e-05
10010.5790605
-0.00439542223103
10009.04723
-0.000261080800296
10009.04723
-0.00112325099112
10009.04723
-0.00106000971785
10009.04723
-0.000261080800296
10009.04723
0.00100503395634
10009.04723
0.00260933419736
10009.04723
-0.000279528958128
10009.04723
-0.0003253503553
10009.04723
-0.00243669765986
10009.04723
-0.000830748022587
10009.04723
-0.00201176743748
10005.8846569
-0.00224182429266
10005.8846569
0.000949908981415
10005.8846569
-0.000202369008837
10005.8846569
-0.000186848158639
10005.8846569
-0.000418881550147
10005.8846569
0.000395480592853
10005.8846569
-0.0060420234199
10012.1242503
0.00113852594038
10012.1242503
-0.00014603697409
10012.1242503
-0.0036949813184
10016.2487682
0.00158272839152
10016.2487682
0.000896555052002
10025.7568226
0.0019414141993
10025.7568226
-0.00257194595758
10025.7568226
0.00130861918842
10025.938965
-0.00465802602028
10025.938965
0.000640283901805
10025.938965
0.00299102084503
10020.5334102
0.00171885366189
10020.5334102
0.00194747301682
10020.5334102
0.00136804099307
10020.5334102
0.0020835794281
10020.5334102
-0.0042582672626
10020.5334102
-0.00212041425983
10020.5334102
0.000890840388874
10006.5914562
-0.000543340922817
10003.4437211
6.87934192712e-05
10003.4437211
-0.00464448693233
10003.4437211
0.00042137484078
10013.9401585
-0.00225917033637
10013.9401585
0.000349499569101
10013.9401585
0.000899253922268
10024.867249
0.00135328925199
10024.867249
0.0022758530848
10026.950205
-0.00456650747275
10026.950205
0.00275658101688
10026.950205
0.0017704702554
10028.6714716
0.00327827659038
10028.9099672
0.000305706506451
10028.9099672
-0.003540287568
10028.9099672
0.000701621749857
10028.9483687
0.0018676908543
10028.9483687
0.00206353629832
10028.9483687
0.00347519631843
10028.9483687
0.000522600817798
10028.9483687
-0.0015740407619
10018.4155786
-0.00160546310969
10013.3440912
-2.58516064471e-05
10028.9544546
-0.00101990121643
10028.9544546
0.000537570087707
10028.9544546
0.00138652414962
10028.9544546
-0.00440741089091
10028.9544546
0.000537570087707
10028.9544546
-0.00440741089091
10028.9544546
0.00186795439935
10028.9544546
-0.00375543035062
10030.0620125
0.000904081036853
10030.0620125
0.00332185815123
10030.0620125
0.000823938564504
10030.0620125
-0.00377204618727
10015.5560932
0.00133663276981
10015.5560932
-0.00218909453436
10002.2517677
0.000793815862768
10002.2517677
-0.00491330734791
10002.2517677
-0.00115595050429
10002.2517677
-0.00018637899569
10018.2416576
0.000990863431882
10018.2416576
0.000797714081548
10018.2416576
0.00036649396322
10018.2416576
0.000516329814925
10018.2416576
0.000516329814925
10021.4062799
-0.00324976750086
10010.3739004
-0.000203520131798
10030.5627054
0.00166847128383
10030.5627054
0.000300972448898
10030.5627054
0.00145616235842
10030.5627054
5.44598135791e-05
10030.5627054
0.00159087590298
10031.256279
0.00231559537516
10031.256279
0.0010998336936
10031.5955446
0.00166427600384
10031.5955446
-0.00438926272359
10031.5955446
0.000114354869018
10031.5955446
-8.27344058259e-05
10029.3815414
0.00147351322232
10029.3815414
0.000789380689488
10029.3815414
0.00227038944223
10029.3815414
-0.00186519365618
10029.3815414
0.00188644859744
10029.3815414
1.87577431384e-05
10011.5397586
6.11791158542e-05
10011.5397586
0.00117001321188
10011.5397586
-0.000802741722065
10017.449798
0.00234489748874
10017.449798
-0.00420082039187
10017.449798
-0.000190851356598
10017.449798
8.4907128838e-05
10017.449798
-0.000513662751265
10017.449798
0.0007708956141
10017.449798
8.28008754703e-05
10017.449798
-0.00218030760662
10017.449798
8.4907128838e-05
10018.2143022
0.00301828542556
10018.2143022
0.00293455784447
10031.6380118
-0.00284935947595
10031.6380118
-0.00399997125471
10031.6380118
0.000979113826485
10031.6380118
-0.00176749447079
10031.6380118
0.00326184977822
10031.6380118
0.00120561389909
10031.7380657
0.000887925466101
10031.7380657
0.000651994630601
10031.7380657
0.00112069172708
10031.7380657
0.000983445388424
10031.7380657
0.000797043764422
10032.8215984
0.0015539549114
10032.8215984
-0.00310050684301
10032.8215984
0.00111991361469
10032.8215984
0.00365105764532
10034.2221019
-0.00145377260547
10034.2221019
0.000692206237448
10015.1196558
-7.66522522794e-05
10015.1196558
0.00200145694987
10015.1196558
-0.00413787769014
10015.1196558
-0.00356506947455
10015.1196558
-0.000766947376909
10015.1196558
0.000198281157696
10015.1196558
0.0002437490471
10015.1196558
0.00175315944207
10015.1196558
-0.000625859317011
10018.168418
0.00147387610054
10018.168418
0.000634162160541
10018.168418
-0.00152063664233
10024.0081735
0.00238672665222
10024.0081735
0.00104141210487
10024.0081735
0.00303143454575
10006.1730869
-0.00452600904951
10006.1730869
-0.00287133582877
10006.1730869
-0.00274324360556
10006.1730869
-0.000622829345729
10003.5918437
-0.00285529086528
10003.5918437
0.000430622705297
10003.5918437
0.00230020406822
10003.5918437
-0.00499314386805
10002.2838516
0.000105385744814
10002.2838516
-0.00273026114593
10002.2838516
-0.00250112000497
10002.2838516
0.00115580771651
10002.2838516
-0.00276498705289
10002.2838516
0.000373834010439
10003.019343
-0.000667934292959
10003.019343
0.00227534889426
10003.019343
0.00124267275413
10003.019343
-0.000816917408733
10003.019343
0.00093924943519
10003.019343
-0.000905660225883
10003.019343
0.00122812564902
10003.019343
-0.00015305240658
10034.2808217
0.000160953900863
10034.2808217
-0.00329929757419
10036.0890279
0.00237264601281
10036.0890279
0.000544195287935
10036.0890279
0.00225005283592
10037.5633098
0.00190295643792
10037.5633098
-0.00466921813984
10037.5633098
0.00192255963323
10037.5633098
0.00250592356699
10037.865875
-0.00351486441118
10037.865875
0.000866995032254
10037.865875
0.00073340714423
10024.4008086
0.000618725570948
10024.4008086
9.39507088509e-06
10024.4008086
-0.000425286804401
10024.4008086
-0.000197236159297
10024.4008086
0.000904256567176
10024.4008086
0.0013731123553
10037.9876955
0.0021110797547
10037.9876955
0.00148042048945
10039.4456483
-0.00115442926635
10026.722997
-0.00571493457227
10026.722997
0.000230347773686
10039.7629168
0.000419839190423
10039.7629168
0.00321704736903
10039.7629168
0.00159234870627
10039.7629168
0.000775431297541
10039.7629168
0.00191491002717
10040.4849497
0.00108242195669
10040.4849497
-0.00332097482314
10040.4849497
0.00220809376035
10040.4849497
0.000966361037743
10040.4849497
0.00236698487116
10040.4849497
0.00158845098742
10040.4849497
0.000925179562615
10040.4849497
0.000980296136686
10040.4849497
0.000806663471253
10040.4849497
0.00221911025267
10040.4849497
0.000925179562615
10040.4849497
0.00136195091482
10040.4849497
0.000806663471253
10032.8366658
0.000871631233068
10032.8366658
0.00112056584312
10039.0010033
0.00155938902516
10039.0010033
0.000666172857082
10039.0010033
0.00101823010187
10039.0010033
0.000314313671569
10039.0010033
0.00358049501173
10039.0010033
0.00215491839784
10039.0010033
0.0018213627666
10039.0010033
0.00251474535694
10039.0010033
0.00249863846035
10039.0010033
-6.41918548238e-05
10039.0010033
-0.000489155825158
10032.8661847
0.000750646012444
10032.8661847
-0.00276883890641
10028.2392508
0.00018791784591
10028.2392508
0.0022813193092
10028.2392508
0.00112551159269
10023.1080071
0.00188003630828
10023.1080071
0.000278220924871
10021.6841155
-0.00420839803428
10021.6841155
0.000149206191897
10021.6841155
0.0
10021.6841155
-0.000512038675291
10021.6841155
-0.00328050225988
10020.9873397
0.00110196616376
10020.9873397
-3.01961648693e-05
10020.9873397
8.10035254889e-05
10020.9873397
0.00196714608027
10020.9873397
0.000425740926081
10020.9873397
-0.000393104672991
10020.9873397
-0.00416515086026
10020.9873397
-0.00538700220356
10020.9873397
-6.23207115987e-05
10013.0680135
0.00260203816992
10013.0680135
-0.000207227242027
10013.0680135
-0.000323674278137
10013.0680135
-0.0025268385662
10013.0680135
0.00137530693646
10013.0680135
-0.000736452014577
10013.0680135
-0.00361127070024
10013.0680135
-0.00551306767497
10013.0680135
-0.000855923668686
10013.0680135
-0.000323674278137
10012.7711875
-0.0003365486369
10012.7711875
-0.000604725331831
10012.7711875
-0.00366692012509
10012.4859054
-0.00284517752749
10019.0555305
0.000818630687765
10019.0555305
-0.000814604699267
10019.0555305
0.000434045111119
10009.418425
-0.00024225127891
10009.418425
0.000328104755444
10009.418425
-0.000961169390161
10009.418425
0.000808246750025
10009.418425
-0.000846550976095
10009.418425
-0.00128165313813
10009.418425
-0.00381236738057
10008.0929934
-0.000952286033319
10008.0929934
-0.00192422814208
10008.0929934
-0.00022780810664
10024.4972701
-0.00472048053774
10024.4972701
0.000866146949184
10024.4972701
-0.00463027444974
10024.4972701
-0.00346099471186
10024.4972701
-0.00394848745768
10024.4972701
-0.0052349137453
10007.0236081
-0.000348895020965
10007.0236081
-0.00188319909113
10007.0236081
-0.000950734663676
10007.0236081
0.00252151997669
10007.0236081
0.000496377065396
10007.0236081
-0.00042787030083
10007.0236081
0.000588673511831
10007.0236081
-0.00107125960909
10007.0236081
[  9864.93127015   9845.35942289   9938.03702853   9863.65905659
   9942.16765992   9893.28707931   9873.32580922   9942.57526778
   9917.54108202   9908.85571917   9905.34066257   9922.76925204
   9889.84224228   9843.41009855   9888.52785942   9946.71362523
   9939.90381201   9893.47853993   9905.23192108   9876.08625717
   9649.52317638   9839.68437032   9715.8539923    9841.0621744
   9802.37311913   9859.96393697   9934.72329741   9930.22152803
   9918.14864827   9905.56595189   9889.10516084   9937.15450073
   9899.76644161   9947.65342897   9751.05473466   9899.20108882
   9903.34132455   9849.83037769   9883.99217968   9919.58630108
   9852.07342854   9927.93768639   9694.63364817   9914.45885853
   9827.70331043   9875.49458792   9906.03435686   9851.45558623
   9887.72856999   9915.30204244   9817.19857963   9888.80747938
   9867.84076537   9840.5421167    9900.76837451   9895.48226019
   9778.73043515   9938.24867283   9787.79228001   9724.37580273
   9949.38679913   9903.57554514   9447.95227678   9951.83241589
   9948.82441041   9879.73297267   9931.80103574   9953.16428038
   9881.44545333   9902.76461183   9904.21569892   9874.81248663
   9896.33943134   9883.23863608   9934.07738192   9879.36413228
   9899.08434377   9906.24415363   9906.19138329   9963.71803128
   9953.05556458   9939.76619623   9893.49746341   9952.79086474
   9947.33012248   9957.65855223   9959.61361455   9191.22835838
   9950.8927455    9962.26374006   9892.65689051   9774.75469965
   9917.30955452   9812.13599115   9946.69170451   9924.20648863
   9910.06473272   9926.4199128    9942.10944475   9879.99888833
   9934.75138282   9964.03661217   9907.96137778   9959.63460464
   9946.1517306    9943.54338049   9927.23137543   9965.73280022
   9950.61846538   9901.10392714   9886.98961607   9961.34457308
   9726.04629472   9925.21862792   9857.66037709   9904.52435813
   9892.60184261   9918.10773045   9931.5498904    9895.83386086
   9939.73507563   9968.23786424   9967.74776474   9961.09316745
   9959.27071429   9861.06707655   9903.02496121   9877.70739054
   9950.48428987   9824.54403943   9931.0511448    9963.01182816
   9979.26036588   9911.1733367    9955.57437629   9955.36279135
   9916.98876262   9856.41318759   9858.92128134   9920.43339911
   9953.95547729   9964.81636594   9953.89088116   9919.38893549
   9951.25793845   9979.58279366   9922.67215054   9931.63370125
   9939.19975042   9825.73778631   9972.49644281  10000.03927758
   9984.91740268   9977.15147447   9951.10570591   9980.33201415
   9976.62171759   9979.19461145   9931.25978129   9971.51259397
   9963.99074487   9924.38621614   9983.96215194   9982.58657371
  10000.05834489   9723.96372228   9973.13694976   9939.98398488
   9976.57063725   9935.05003433   9964.89816178   9921.13376078
   9908.8824136    9972.57597119   9954.69030551   9896.86245354
   9996.58680185   9784.43102997   9989.35151361   9519.39245657
   9988.60115088   9950.62089604   9987.15340949   9967.75874168
   9894.32058688   9980.7096766    9941.91619275   9933.00514496
   9994.85588678  10000.43372174   9936.16291299   9966.91042478
   9880.43649467   9931.21270641   9975.27722545   9999.05400851
   9984.53945536   9965.39333293   9955.38313783   9981.37653869
   9948.29474966   9920.2883349    9935.06291843   9920.44325942
   9931.9377697    9927.43863817   9921.88429395   9817.52850333
   9808.10275232   9987.40649014   9975.45065765   9925.38282867
   9985.0142824    9956.7961714    9996.27057017   9951.78947595
   9937.44653786   9991.94731096   9850.64587274   9966.69055969
   9990.21171731  10006.29614079  10006.69404583   9999.10571161
   9952.82539049   9971.56333061   9966.7426814    9950.1759761
   9952.07382949  10004.57505893   9958.36733717   9843.38361822
   9916.60593376   9971.78132821   9981.93893778   9948.77568291
   9875.40790023   9900.14792156   9949.76414605   9958.78645455
   9891.95237785   9926.58491064   9919.6415435    9957.55375383
   9869.61922286   9975.68315026]

In [107]:
plt.plot(past_data)


Out[107]:
[<matplotlib.lines.Line2D at 0x105c40110>]

In [142]:
past_data = AM.one_market_simulation(50000)
plt.plot(past_data)


Out[142]:
[<matplotlib.lines.Line2D at 0x10fc2ae50>]

In [114]:
past_data2, T_A, T_B, share = AM.two_market_simulation(2)

In [115]:
plt.plot(past_data2)


Out[115]:
[<matplotlib.lines.Line2D at 0x10db3c950>]

In [14]:
AM.plot_share(share)



In [31]:
past_data2[-1]


Out[31]:
9986.367058720394

In [ ]: