In [1]:
import scipy
import pandas as pd
import random
import numpy as np
import matplotlib.pyplot as plt
In [2]:
random.seed(27)
In [3]:
number_elevators = 2
number_unique_people = 20
number_of_floors = 100
In [4]:
def generate_people_flow(number_unique_people = 20, number_rows = 30, uppeak = 8, downpeak = 18, twopeak = 13):
people = np.random.randint(low = 0, high = number_unique_people, size = number_rows)
timestamp = np.random.randint(low = 1, high = number_rows*3, size = number_rows)
timestamp.sort()
pair = [['R'+str(people[i]), timestamp[i]] for i in xrange(0, number_rows)]
return pair
In [5]:
people = generate_people_flow()
people
Out[5]:
In [6]:
# def start_destination(number_of_floors = 100):
# # low = random.randint(0, number_of_floors)
# start = random.randint(0, number_of_floors)
# end = random.randint(0, number_of_floors)
# return start, end
In [7]:
data_rows = [[person[0],person[1], random.randint(0, number_of_floors), random.randint(0, number_of_floors)] for person in people]
data_rows
Out[7]:
In [8]:
name_elevators = ['C'+str(i) for i in xrange(1, number_elevators+1)]
In [9]:
lift_speed = [random.random() for i in xrange(1, number_elevators+1)]
lift_speed
Out[9]:
In [10]:
capacity_lift = 12
In [11]:
number_of_floors = 100
In [12]:
init_lift = [random.randint(0, number_of_floors) for i in xrange(1, number_elevators+1)]
In [13]:
init_lift
Out[13]:
In [15]:
df = pd.DataFrame(data=data_rows, columns = ['Passenger_Id', 'Timestamp', 'Origin','Destination'])
In [18]:
df.to_csv("sample_data.csv", encoding='utf-8', index = False)
In [ ]: