In [1]:
import pylearn2.utils
import pylearn2.config
import theano
import neukrill_net.dense_dataset
import neukrill_net.utils
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import holoviews as hl
%load_ext holoviews.ipython
import sklearn.metrics
Using gpu device 0: Tesla K40c
:0: FutureWarning: IPython widgets are experimental and may change in the future.
Welcome to the HoloViews IPython extension! (http://ioam.github.io/holoviews/)
Available magics: %compositor, %opts, %params, %view, %%labels, %%opts, %%view
<matplotlib.figure.Figure at 0x7f9aede97410>
<matplotlib.figure.Figure at 0x7f9aede97dd0>
<matplotlib.figure.Figure at 0x7f9aede97bd0>
In [2]:
cd ..
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/neukrill-net-work
In [3]:
!cat yaml_templates/replicate_8aug_online.yaml
!obj:pylearn2.train.Train {
dataset: &train !obj:neukrill_net.image_directory_dataset.ListDataset {
transformer: !obj:neukrill_net.augment.RandomAugment {
units: 'float',
rotate: [0,90,180,270],
rotate_is_resizable: 0,
flip: 1,
resize: %(final_shape)s,
normalise: {global_or_pixel: 'global',
mu: %(mu)s,
sigma: %(sigma)s}
},
settings_path: %(settings_path)s,
run_settings_path: %(run_settings_path)s
},
model: !obj:pylearn2.models.mlp.MLP {
batch_size: &batch_size 128,
input_space: !obj:pylearn2.space.Conv2DSpace {
shape: %(final_shape)s,
num_channels: 1,
axes: ['b', 0, 1, 'c'],
},
layers: [ !obj:pylearn2.models.mlp.ConvRectifiedLinear {
layer_name: h1,
output_channels: 48,
irange: .025,
init_bias: 0,
kernel_shape: [8, 8],
pool_shape: [2, 2],
pool_stride: [2, 2],
max_kernel_norm: 1.9365
},!obj:pylearn2.models.mlp.ConvRectifiedLinear {
layer_name: h2,
output_channels: 96,
irange: .025,
init_bias: 1,
kernel_shape: [5, 5],
pool_shape: [2, 2],
pool_stride: [2, 2],
max_kernel_norm: 1.9365
}, !obj:pylearn2.models.mlp.ConvRectifiedLinear {
layer_name: h3,
output_channels: 128,
irange: .025,
init_bias: 0,
kernel_shape: [3, 3],
border_mode: full,
pool_shape: [1, 1],
pool_stride: [1, 1],
max_kernel_norm: 1.9365
}, !obj:pylearn2.models.mlp.ConvRectifiedLinear {
layer_name: 'h4',
output_channels: 128,
irange: .025,
init_bias: 1,
kernel_shape: [3, 3],
border_mode: full,
pool_shape: [2, 2],
pool_stride: [2, 2],
max_kernel_norm: 1.9365
}, !obj:pylearn2.models.mlp.RectifiedLinear {
dim: 1024,
max_col_norm: 1.9,
layer_name: h5,
istdev: .05,
W_lr_scale: .25,
b_lr_scale: .25
}, !obj:pylearn2.models.mlp.Softmax {
n_classes: %(n_classes)i,
max_col_norm: 1.9365,
layer_name: y,
istdev: .05,
W_lr_scale: .25,
b_lr_scale: .25
}
],
},
algorithm: !obj:pylearn2.training_algorithms.sgd.SGD {
train_iteration_mode: even_shuffled_sequential,
monitor_iteration_mode: even_sequential,
batch_size: *batch_size,
learning_rate: .1,
learning_rule: !obj:pylearn2.training_algorithms.learning_rule.Momentum {
init_momentum: 0.5
},
monitoring_dataset: {
'train': *train,
'valid' : !obj:neukrill_net.image_directory_dataset.ListDataset {
transformer: !obj:neukrill_net.augment.RandomAugment {
units: 'float',
rotate: [0,90,180,270],
rotate_is_resizable: 0,
flip: 1,
resize: %(final_shape)s,
normalise: {global_or_pixel: 'global',
mu: %(mu)s,
sigma: %(sigma)s}
},
settings_path: %(settings_path)s,
run_settings_path: %(run_settings_path)s,
training_set_mode: "validation"
}
},
cost: !obj:pylearn2.costs.cost.SumOfCosts { costs: [
!obj:pylearn2.costs.mlp.dropout.Dropout {
input_include_probs: {
h1 : 1.,
h2 : 1.,
h3 : 1.,
h4 : 1.,
h5 : 0.5
},
input_scales: {
h1 : 1.,
h2 : 1.,
h3 : 1.,
h4 : 1.,
h5 : 2.
}
},
!obj:pylearn2.costs.mlp.WeightDecay {
coeffs : {
h1 : .00005,
h2 : .00005,
h3 : .00005,
h4 : .00005,
h5 : .00005
}
}
]
},
termination_criterion: !obj:pylearn2.termination_criteria.And {
criteria: [
!obj:pylearn2.termination_criteria.EpochCounter {
max_epochs: 500
},
]
}
},
extensions: [
!obj:pylearn2.training_algorithms.learning_rule.MomentumAdjustor {
start: 1,
saturate: 200,
final_momentum: 0.95
},
!obj:pylearn2.training_algorithms.sgd.LinearDecayOverEpoch {
start: 1,
saturate: 200,
decay_factor: 0.025
},
!obj:pylearn2.train_extensions.best_params.MonitorBasedSaveBest {
channel_name: valid_y_misclass,
save_path: '%(save_path)s'
},
!obj:pylearn2.training_algorithms.sgd.MonitorBasedLRAdjuster {
high_trigger: 1.,
low_trigger: 0.999,
grow_amt: 1.012,
shrink_amt: 0.986,
max_lr: 0.4,
min_lr: 1e-5,
channel_name: valid_y_misclass
}
],
save_path: '%(alt_picklepath)s',
save_freq: 1
}
We want to know how to build a model with parallel channels. So, we're going to look at interactively building just the model part of this specification and how it deals with different inputs. It should be possible to put the convolutional layers in parallel using a CompositeSpace as described in this post on the pylearn-users. It could be troublesome, however, supplying these layers with two data streams.
Using the specification from above we can see how to instantiate an MLP class interactively. The obvious part we need to deal with first is the input_space. We have to define this to be a CompositeSpace (documentation for spaces). Seems like this will involve modifying the dataset class, but as long as the tuple is in the right format it shouldn't be a problem.
This post might also be useful, as they seem to be trying to do the same thing, and contains an example of how to defined the CompositeSpace. So, we should start by instantiating the CompositeSpace.
In [4]:
import pylearn2.space
In [5]:
final_shape = (48,48)
In [6]:
input_space = pylearn2.space.CompositeSpace([
pylearn2.space.Conv2DSpace(shape=final_shape,num_channels=1,axes=['b',0,1,'c']),
pylearn2.space.Conv2DSpace(shape=final_shape,num_channels=1,axes=['b',0,1,'c'])
])
In [7]:
import pylearn2.models.mlp
First, we have to instantiate two copies of the above convolutional layers as their own MLP objects. Originally, I thought these should have an input_source to specify the inputs they take, turns out nested MLPs do not have input or target sources. Might as well store these in a dictionary:
In [8]:
convlayers = {}
for i in range(2):
convlayers[i] = pylearn2.models.mlp.MLP(
layer_name="convlayer_{0}".format(i),
batch_size=128,
layers=[pylearn2.models.mlp.ConvRectifiedLinear(
layer_name='h1',
output_channels=48,
irange=0.025,
init_bias=0,
kernel_shape=[8,8],
pool_shape=[2,2],
pool_stride=[2,2],
max_kernel_norm=1.9365
),
pylearn2.models.mlp.ConvRectifiedLinear(
layer_name='h2',
output_channels=96,
irange=0.025,
init_bias=0,
kernel_shape=[5,5],
pool_shape=[2,2],
pool_stride=[2,2],
max_kernel_norm=1.9365
),
pylearn2.models.mlp.ConvRectifiedLinear(
layer_name='h3',
output_channels=128,
irange=0.025,
init_bias=0,
kernel_shape=[3,3],
pool_shape=[2,2],
pool_stride=[2,2],
max_kernel_norm=1.9365
),
pylearn2.models.mlp.ConvRectifiedLinear(
layer_name='h4',
output_channels=128,
irange=0.025,
init_bias=0,
kernel_shape=[3,3],
pool_shape=[2,2],
pool_stride=[2,2],
max_kernel_norm=1.9365
)
]
)
Then we can initialise our CompositeLayer with these two stacks of convolutional layers. Have to define dictionary mapping which of the inputs in the composite space supplied goes to which component of the space.
In [9]:
inputs_to_layers = {0:[0],1:[1]}
compositelayer = pylearn2.models.mlp.CompositeLayer(
layer_name="parallel_conv",
layers=[convlayers[i] for i in range(2)],
inputs_to_layers=inputs_to_layers)
Unfortunately, it turns out we also have to put a FlattenerLayer around this so that the output of this layer will play nicely with the fully connected layer following this:
In [10]:
flattened = pylearn2.models.mlp.FlattenerLayer(raw_layer=compositelayer)
Now we need to connect this composite layer to the rest of the network, which is a single fully connected layer and the softmax output layer. To do this, we instantiate another MLP object, in which the first layer is this composite layer. This also when we use the composite input space we defined above.
In [11]:
n_classes=121
In [12]:
main_mlp =None
In [13]:
main_mlp = pylearn2.models.mlp.MLP(
batch_size=128,
input_space=input_space,
input_source=['img_1','img_2'],
layers=[
flattened,
pylearn2.models.mlp.RectifiedLinear(
dim=1024,
max_col_norm=1.9,
layer_name='h5',
istdev=0.05,
W_lr_scale=0.25,
b_lr_scale=0.25),
pylearn2.models.mlp.Softmax(
n_classes=121,
max_col_norm=1.9365,
layer_name='y',
istdev=0.05,
W_lr_scale=0.25,
b_lr_scale=0.25
)
]
)
Input shape: (48, 48)
Detector space: (41, 41)
Output space: (21, 21)
Input shape: (21, 21)
Detector space: (17, 17)
Output space: (9, 9)
Input shape: (9, 9)
Detector space: (7, 7)
Output space: (4, 4)
Input shape: (4, 4)
Detector space: (2, 2)
Output space: (1, 1)
Input shape: (48, 48)
Detector space: (41, 41)
Output space: (21, 21)
Input shape: (21, 21)
Detector space: (17, 17)
Output space: (9, 9)
Input shape: (9, 9)
Detector space: (7, 7)
Output space: (4, 4)
Input shape: (4, 4)
Detector space: (2, 2)
Output space: (1, 1)
To test this model we need a dataset that's going to supply the input data in the correct format. This should be a tuple of 4D arrays returns by the iterator in the tuple containing the input and target batches. We can create this pretty easily by just making a Dataset that inherits our old ListDataset and creates an iterator that contains two FlyIterators.
In [14]:
import neukrill_net.image_directory_dataset
import copy
In [15]:
reload(neukrill_net.image_directory_dataset)
Out[15]:
<module 'neukrill_net.image_directory_dataset' from '/afs/inf.ed.ac.uk/user/s08/s0805516/repos/neukrill-net-tools/neukrill_net/image_directory_dataset.pyc'>
In [16]:
class ParallelIterator(object):
def __init__(self, *args, **keyargs):
keyargs['rng'] = np.random.RandomState(42)
self.iterator_1 = neukrill_net.image_directory_dataset.FlyIterator(*args,**keyargs)
keyargs = copy.deepcopy(keyargs)
keyargs['rng'] = np.random.RandomState(42)
self.iterator_2 = neukrill_net.image_directory_dataset.FlyIterator(*args,**keyargs)
self.stochastic=False
self.num_examples = self.iterator_1.num_examples
def __iter__(self):
return self
def next(self):
# get a batch from both iterators:
Xbatch1,ybatch1 = self.iterator_1.next()
Xbatch2,ybatch2 = self.iterator_2.next()
assert np.allclose(ybatch1,ybatch2)
return Xbatch1,Xbatch2,ybatch1
In [17]:
class ParallelDataset(neukrill_net.image_directory_dataset.ListDataset):
def iterator(self, mode=None, batch_size=None, num_batches=None, rng=None,
data_specs=None, return_tuple=False):
if not num_batches:
num_batches = int(len(self.X)/batch_size)
iterator = ParallelIterator(dataset=self, batch_size=batch_size,
num_batches=num_batches,
final_shape=self.run_settings["final_shape"],
rng=None,mode=mode)
return iterator
In [18]:
import neukrill_net.augment
import os
In [19]:
dataset = ParallelDataset(
transformer=neukrill_net.augment.RandomAugment(
units='float',
rotate=[0,90,180,270],
rotate_is_resizable=0,
flip=1,
resize=final_shape,
normalise={'global_or_pixel':'global',
'mu': 0.957,
'sigma': 0.142}
),
settings_path=os.path.abspath("settings.json"),
run_settings_path=os.path.abspath("run_settings/replicate_8aug.json"),
force=True
)
Testing this new dataset iterator:
In [20]:
iterator = dataset.iterator(mode='even_shuffled_sequential',batch_size=128)
In [21]:
X1,X2,y = iterator.next()
Plotting some of the images it produces side by side to make sure they're the same:
In [22]:
channels = None
for i in range(20):
if not channels:
channels = hl.Image(X1[i,:].squeeze(),group="Iterator 1")
channels = hl.Image(X2[i,:].squeeze(),group="Iterator 2")
else:
channels += hl.Image(X1[i,:].squeeze(),group="Iterator 1")
channels += hl.Image(X2[i,:].squeeze(),group="Iterator 2")
channels
Out[22]:
Don't know why there's a single one from Iterator 2 at the start, but otherwise seems to have worked.
The rest of the train object stays the same, apart from the save path and that the algorithm will have to load one of these new ParallelDataset objects for its validation set. So, we're missing:
It's worth noting that when we define the cost and the weight decay we have to address the new convolutional layers inside the composite layer.
In [23]:
import pylearn2.training_algorithms.sgd
import pylearn2.costs.mlp.dropout
import pylearn2.costs.cost
import pylearn2.termination_criteria
In [24]:
algorithm = pylearn2.training_algorithms.sgd.SGD(
train_iteration_mode='even_shuffled_sequential',
monitor_iteration_mode='even_sequential',
batch_size=128,
learning_rate=0.1,
learning_rule= pylearn2.training_algorithms.learning_rule.Momentum(
init_momentum=0.5
),
monitoring_dataset={
'train':dataset,
'valid':ParallelDataset(
transformer=neukrill_net.augment.RandomAugment(
units='float',
rotate=[0,90,180,270],
rotate_is_resizable=0,
flip=1,
resize=final_shape,
normalise={'global_or_pixel':'global',
'mu': 0.957,
'sigma': 0.142}
),
settings_path=os.path.abspath("settings.json"),
run_settings_path=os.path.abspath("run_settings/replicate_8aug.json"),
force=True, training_set_mode='validation'
)
},
cost=pylearn2.costs.cost.SumOfCosts(
costs=[
pylearn2.costs.mlp.dropout.Dropout(
input_include_probs={'h5':0.5},
input_scales={'h5':2.0}),
pylearn2.costs.mlp.WeightDecay(coeffs={'parallel_conv':0.00005,
'h5':0.00005})
]
),
termination_criterion=pylearn2.termination_criteria.EpochCounter(max_epochs=500)
)
In [25]:
import pylearn2.train_extensions
import pylearn2.train_extensions.best_params
In [26]:
extensions = [
pylearn2.training_algorithms.learning_rule.MomentumAdjustor(
start=1,
saturate=200,
final_momentum=0.95
),
pylearn2.training_algorithms.sgd.LinearDecayOverEpoch(
start=1,
saturate=200,
decay_factor=0.025
),
pylearn2.train_extensions.best_params.MonitorBasedSaveBest(
channel_name='valid_y_nll',
save_path='/disk/scratch/neuroglycerin/models/parallel_interactive.pkl'
),
pylearn2.training_algorithms.sgd.MonitorBasedLRAdjuster(
high_trigger=1.0,
low_trigger=0.999,
grow_amt=1.012,
shrink_amt=0.986,
max_lr=0.4,
min_lr=0.00005,
channel_name='valid_y_nll'
)
]
In [27]:
import pylearn2.train
In [28]:
train = pylearn2.train.Train(
dataset=dataset,
model=main_mlp,
algorithm=algorithm,
extensions=extensions,
save_path='/disk/scratch/neuroglycerin/models/parallel_interactive_recent.pkl',
save_freq=1
)
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/train.py:85: UserWarning: dataset has no yaml src, model won't know what data it was trained on
"data it was trained on")
We can live with that warning.
Now, attempting to run the model:
In [29]:
train.main_loop()
Parameter and initial learning rate summary:
h1_W: 0.10000000149
h1_b: 0.10000000149
h2_W: 0.10000000149
h2_b: 0.10000000149
h3_W: 0.10000000149
h3_b: 0.10000000149
h4_W: 0.10000000149
h4_b: 0.10000000149
h1_W: 0.10000000149
h1_b: 0.10000000149
h2_W: 0.10000000149
h2_b: 0.10000000149
h3_W: 0.10000000149
h3_b: 0.10000000149
h4_W: 0.10000000149
h4_b: 0.10000000149
h5_W: 0.0250000003725
h5_b: 0.0250000003725
softmax_b: 0.0250000003725
softmax_W: 0.0250000003725
Compiling sgd_update...
Compiling sgd_update done. Time elapsed: 11.324222 seconds
compiling begin_record_entry...
compiling begin_record_entry done. Time elapsed: 2.091163 seconds
Monitored channels:
learning_rate
momentum
total_seconds_last_epoch
train_h5_col_norms_max
train_h5_col_norms_mean
train_h5_col_norms_min
train_h5_max_x_max_u
train_h5_max_x_mean_u
train_h5_max_x_min_u
train_h5_mean_x_max_u
train_h5_mean_x_mean_u
train_h5_mean_x_min_u
train_h5_min_x_max_u
train_h5_min_x_mean_u
train_h5_min_x_min_u
train_h5_range_x_max_u
train_h5_range_x_mean_u
train_h5_range_x_min_u
train_h5_row_norms_max
train_h5_row_norms_mean
train_h5_row_norms_min
train_objective
train_parallel_conv_convlayer_0_h1_kernel_norms_max
train_parallel_conv_convlayer_0_h1_kernel_norms_mean
train_parallel_conv_convlayer_0_h1_kernel_norms_min
train_parallel_conv_convlayer_0_h1_max_x_max_u
train_parallel_conv_convlayer_0_h1_max_x_mean_u
train_parallel_conv_convlayer_0_h1_max_x_min_u
train_parallel_conv_convlayer_0_h1_mean_x_max_u
train_parallel_conv_convlayer_0_h1_mean_x_mean_u
train_parallel_conv_convlayer_0_h1_mean_x_min_u
train_parallel_conv_convlayer_0_h1_min_x_max_u
train_parallel_conv_convlayer_0_h1_min_x_mean_u
train_parallel_conv_convlayer_0_h1_min_x_min_u
train_parallel_conv_convlayer_0_h1_range_x_max_u
train_parallel_conv_convlayer_0_h1_range_x_mean_u
train_parallel_conv_convlayer_0_h1_range_x_min_u
train_parallel_conv_convlayer_0_h2_kernel_norms_max
train_parallel_conv_convlayer_0_h2_kernel_norms_mean
train_parallel_conv_convlayer_0_h2_kernel_norms_min
train_parallel_conv_convlayer_0_h2_max_x_max_u
train_parallel_conv_convlayer_0_h2_max_x_mean_u
train_parallel_conv_convlayer_0_h2_max_x_min_u
train_parallel_conv_convlayer_0_h2_mean_x_max_u
train_parallel_conv_convlayer_0_h2_mean_x_mean_u
train_parallel_conv_convlayer_0_h2_mean_x_min_u
train_parallel_conv_convlayer_0_h2_min_x_max_u
train_parallel_conv_convlayer_0_h2_min_x_mean_u
train_parallel_conv_convlayer_0_h2_min_x_min_u
train_parallel_conv_convlayer_0_h2_range_x_max_u
train_parallel_conv_convlayer_0_h2_range_x_mean_u
train_parallel_conv_convlayer_0_h2_range_x_min_u
train_parallel_conv_convlayer_0_h3_kernel_norms_max
train_parallel_conv_convlayer_0_h3_kernel_norms_mean
train_parallel_conv_convlayer_0_h3_kernel_norms_min
train_parallel_conv_convlayer_0_h3_max_x_max_u
train_parallel_conv_convlayer_0_h3_max_x_mean_u
train_parallel_conv_convlayer_0_h3_max_x_min_u
train_parallel_conv_convlayer_0_h3_mean_x_max_u
train_parallel_conv_convlayer_0_h3_mean_x_mean_u
train_parallel_conv_convlayer_0_h3_mean_x_min_u
train_parallel_conv_convlayer_0_h3_min_x_max_u
train_parallel_conv_convlayer_0_h3_min_x_mean_u
train_parallel_conv_convlayer_0_h3_min_x_min_u
train_parallel_conv_convlayer_0_h3_range_x_max_u
train_parallel_conv_convlayer_0_h3_range_x_mean_u
train_parallel_conv_convlayer_0_h3_range_x_min_u
train_parallel_conv_convlayer_0_h4_kernel_norms_max
train_parallel_conv_convlayer_0_h4_kernel_norms_mean
train_parallel_conv_convlayer_0_h4_kernel_norms_min
train_parallel_conv_convlayer_0_h4_max_x_max_u
train_parallel_conv_convlayer_0_h4_max_x_mean_u
train_parallel_conv_convlayer_0_h4_max_x_min_u
train_parallel_conv_convlayer_0_h4_mean_x_max_u
train_parallel_conv_convlayer_0_h4_mean_x_mean_u
train_parallel_conv_convlayer_0_h4_mean_x_min_u
train_parallel_conv_convlayer_0_h4_min_x_max_u
train_parallel_conv_convlayer_0_h4_min_x_mean_u
train_parallel_conv_convlayer_0_h4_min_x_min_u
train_parallel_conv_convlayer_0_h4_range_x_max_u
train_parallel_conv_convlayer_0_h4_range_x_mean_u
train_parallel_conv_convlayer_0_h4_range_x_min_u
train_parallel_conv_convlayer_1_h1_kernel_norms_max
train_parallel_conv_convlayer_1_h1_kernel_norms_mean
train_parallel_conv_convlayer_1_h1_kernel_norms_min
train_parallel_conv_convlayer_1_h1_max_x_max_u
train_parallel_conv_convlayer_1_h1_max_x_mean_u
train_parallel_conv_convlayer_1_h1_max_x_min_u
train_parallel_conv_convlayer_1_h1_mean_x_max_u
train_parallel_conv_convlayer_1_h1_mean_x_mean_u
train_parallel_conv_convlayer_1_h1_mean_x_min_u
train_parallel_conv_convlayer_1_h1_min_x_max_u
train_parallel_conv_convlayer_1_h1_min_x_mean_u
train_parallel_conv_convlayer_1_h1_min_x_min_u
train_parallel_conv_convlayer_1_h1_range_x_max_u
train_parallel_conv_convlayer_1_h1_range_x_mean_u
train_parallel_conv_convlayer_1_h1_range_x_min_u
train_parallel_conv_convlayer_1_h2_kernel_norms_max
train_parallel_conv_convlayer_1_h2_kernel_norms_mean
train_parallel_conv_convlayer_1_h2_kernel_norms_min
train_parallel_conv_convlayer_1_h2_max_x_max_u
train_parallel_conv_convlayer_1_h2_max_x_mean_u
train_parallel_conv_convlayer_1_h2_max_x_min_u
train_parallel_conv_convlayer_1_h2_mean_x_max_u
train_parallel_conv_convlayer_1_h2_mean_x_mean_u
train_parallel_conv_convlayer_1_h2_mean_x_min_u
train_parallel_conv_convlayer_1_h2_min_x_max_u
train_parallel_conv_convlayer_1_h2_min_x_mean_u
train_parallel_conv_convlayer_1_h2_min_x_min_u
train_parallel_conv_convlayer_1_h2_range_x_max_u
train_parallel_conv_convlayer_1_h2_range_x_mean_u
train_parallel_conv_convlayer_1_h2_range_x_min_u
train_parallel_conv_convlayer_1_h3_kernel_norms_max
train_parallel_conv_convlayer_1_h3_kernel_norms_mean
train_parallel_conv_convlayer_1_h3_kernel_norms_min
train_parallel_conv_convlayer_1_h3_max_x_max_u
train_parallel_conv_convlayer_1_h3_max_x_mean_u
train_parallel_conv_convlayer_1_h3_max_x_min_u
train_parallel_conv_convlayer_1_h3_mean_x_max_u
train_parallel_conv_convlayer_1_h3_mean_x_mean_u
train_parallel_conv_convlayer_1_h3_mean_x_min_u
train_parallel_conv_convlayer_1_h3_min_x_max_u
train_parallel_conv_convlayer_1_h3_min_x_mean_u
train_parallel_conv_convlayer_1_h3_min_x_min_u
train_parallel_conv_convlayer_1_h3_range_x_max_u
train_parallel_conv_convlayer_1_h3_range_x_mean_u
train_parallel_conv_convlayer_1_h3_range_x_min_u
train_parallel_conv_convlayer_1_h4_kernel_norms_max
train_parallel_conv_convlayer_1_h4_kernel_norms_mean
train_parallel_conv_convlayer_1_h4_kernel_norms_min
train_parallel_conv_convlayer_1_h4_max_x_max_u
train_parallel_conv_convlayer_1_h4_max_x_mean_u
train_parallel_conv_convlayer_1_h4_max_x_min_u
train_parallel_conv_convlayer_1_h4_mean_x_max_u
train_parallel_conv_convlayer_1_h4_mean_x_mean_u
train_parallel_conv_convlayer_1_h4_mean_x_min_u
train_parallel_conv_convlayer_1_h4_min_x_max_u
train_parallel_conv_convlayer_1_h4_min_x_mean_u
train_parallel_conv_convlayer_1_h4_min_x_min_u
train_parallel_conv_convlayer_1_h4_range_x_max_u
train_parallel_conv_convlayer_1_h4_range_x_mean_u
train_parallel_conv_convlayer_1_h4_range_x_min_u
train_term_0
train_term_1_weight_decay
train_y_col_norms_max
train_y_col_norms_mean
train_y_col_norms_min
train_y_max_max_class
train_y_mean_max_class
train_y_min_max_class
train_y_misclass
train_y_nll
train_y_row_norms_max
train_y_row_norms_mean
train_y_row_norms_min
training_seconds_this_epoch
valid_h5_col_norms_max
valid_h5_col_norms_mean
valid_h5_col_norms_min
valid_h5_max_x_max_u
valid_h5_max_x_mean_u
valid_h5_max_x_min_u
valid_h5_mean_x_max_u
valid_h5_mean_x_mean_u
valid_h5_mean_x_min_u
valid_h5_min_x_max_u
valid_h5_min_x_mean_u
valid_h5_min_x_min_u
valid_h5_range_x_max_u
valid_h5_range_x_mean_u
valid_h5_range_x_min_u
valid_h5_row_norms_max
valid_h5_row_norms_mean
valid_h5_row_norms_min
valid_objective
valid_parallel_conv_convlayer_0_h1_kernel_norms_max
valid_parallel_conv_convlayer_0_h1_kernel_norms_mean
valid_parallel_conv_convlayer_0_h1_kernel_norms_min
valid_parallel_conv_convlayer_0_h1_max_x_max_u
valid_parallel_conv_convlayer_0_h1_max_x_mean_u
valid_parallel_conv_convlayer_0_h1_max_x_min_u
valid_parallel_conv_convlayer_0_h1_mean_x_max_u
valid_parallel_conv_convlayer_0_h1_mean_x_mean_u
valid_parallel_conv_convlayer_0_h1_mean_x_min_u
valid_parallel_conv_convlayer_0_h1_min_x_max_u
valid_parallel_conv_convlayer_0_h1_min_x_mean_u
valid_parallel_conv_convlayer_0_h1_min_x_min_u
valid_parallel_conv_convlayer_0_h1_range_x_max_u
valid_parallel_conv_convlayer_0_h1_range_x_mean_u
valid_parallel_conv_convlayer_0_h1_range_x_min_u
valid_parallel_conv_convlayer_0_h2_kernel_norms_max
valid_parallel_conv_convlayer_0_h2_kernel_norms_mean
valid_parallel_conv_convlayer_0_h2_kernel_norms_min
valid_parallel_conv_convlayer_0_h2_max_x_max_u
valid_parallel_conv_convlayer_0_h2_max_x_mean_u
valid_parallel_conv_convlayer_0_h2_max_x_min_u
valid_parallel_conv_convlayer_0_h2_mean_x_max_u
valid_parallel_conv_convlayer_0_h2_mean_x_mean_u
valid_parallel_conv_convlayer_0_h2_mean_x_min_u
valid_parallel_conv_convlayer_0_h2_min_x_max_u
valid_parallel_conv_convlayer_0_h2_min_x_mean_u
valid_parallel_conv_convlayer_0_h2_min_x_min_u
valid_parallel_conv_convlayer_0_h2_range_x_max_u
valid_parallel_conv_convlayer_0_h2_range_x_mean_u
valid_parallel_conv_convlayer_0_h2_range_x_min_u
valid_parallel_conv_convlayer_0_h3_kernel_norms_max
valid_parallel_conv_convlayer_0_h3_kernel_norms_mean
valid_parallel_conv_convlayer_0_h3_kernel_norms_min
valid_parallel_conv_convlayer_0_h3_max_x_max_u
valid_parallel_conv_convlayer_0_h3_max_x_mean_u
valid_parallel_conv_convlayer_0_h3_max_x_min_u
valid_parallel_conv_convlayer_0_h3_mean_x_max_u
valid_parallel_conv_convlayer_0_h3_mean_x_mean_u
valid_parallel_conv_convlayer_0_h3_mean_x_min_u
valid_parallel_conv_convlayer_0_h3_min_x_max_u
valid_parallel_conv_convlayer_0_h3_min_x_mean_u
valid_parallel_conv_convlayer_0_h3_min_x_min_u
valid_parallel_conv_convlayer_0_h3_range_x_max_u
valid_parallel_conv_convlayer_0_h3_range_x_mean_u
valid_parallel_conv_convlayer_0_h3_range_x_min_u
valid_parallel_conv_convlayer_0_h4_kernel_norms_max
valid_parallel_conv_convlayer_0_h4_kernel_norms_mean
valid_parallel_conv_convlayer_0_h4_kernel_norms_min
valid_parallel_conv_convlayer_0_h4_max_x_max_u
valid_parallel_conv_convlayer_0_h4_max_x_mean_u
valid_parallel_conv_convlayer_0_h4_max_x_min_u
valid_parallel_conv_convlayer_0_h4_mean_x_max_u
valid_parallel_conv_convlayer_0_h4_mean_x_mean_u
valid_parallel_conv_convlayer_0_h4_mean_x_min_u
valid_parallel_conv_convlayer_0_h4_min_x_max_u
valid_parallel_conv_convlayer_0_h4_min_x_mean_u
valid_parallel_conv_convlayer_0_h4_min_x_min_u
valid_parallel_conv_convlayer_0_h4_range_x_max_u
valid_parallel_conv_convlayer_0_h4_range_x_mean_u
valid_parallel_conv_convlayer_0_h4_range_x_min_u
valid_parallel_conv_convlayer_1_h1_kernel_norms_max
valid_parallel_conv_convlayer_1_h1_kernel_norms_mean
valid_parallel_conv_convlayer_1_h1_kernel_norms_min
valid_parallel_conv_convlayer_1_h1_max_x_max_u
valid_parallel_conv_convlayer_1_h1_max_x_mean_u
valid_parallel_conv_convlayer_1_h1_max_x_min_u
valid_parallel_conv_convlayer_1_h1_mean_x_max_u
valid_parallel_conv_convlayer_1_h1_mean_x_mean_u
valid_parallel_conv_convlayer_1_h1_mean_x_min_u
valid_parallel_conv_convlayer_1_h1_min_x_max_u
valid_parallel_conv_convlayer_1_h1_min_x_mean_u
valid_parallel_conv_convlayer_1_h1_min_x_min_u
valid_parallel_conv_convlayer_1_h1_range_x_max_u
valid_parallel_conv_convlayer_1_h1_range_x_mean_u
valid_parallel_conv_convlayer_1_h1_range_x_min_u
valid_parallel_conv_convlayer_1_h2_kernel_norms_max
valid_parallel_conv_convlayer_1_h2_kernel_norms_mean
valid_parallel_conv_convlayer_1_h2_kernel_norms_min
valid_parallel_conv_convlayer_1_h2_max_x_max_u
valid_parallel_conv_convlayer_1_h2_max_x_mean_u
valid_parallel_conv_convlayer_1_h2_max_x_min_u
valid_parallel_conv_convlayer_1_h2_mean_x_max_u
valid_parallel_conv_convlayer_1_h2_mean_x_mean_u
valid_parallel_conv_convlayer_1_h2_mean_x_min_u
valid_parallel_conv_convlayer_1_h2_min_x_max_u
valid_parallel_conv_convlayer_1_h2_min_x_mean_u
valid_parallel_conv_convlayer_1_h2_min_x_min_u
valid_parallel_conv_convlayer_1_h2_range_x_max_u
valid_parallel_conv_convlayer_1_h2_range_x_mean_u
valid_parallel_conv_convlayer_1_h2_range_x_min_u
valid_parallel_conv_convlayer_1_h3_kernel_norms_max
valid_parallel_conv_convlayer_1_h3_kernel_norms_mean
valid_parallel_conv_convlayer_1_h3_kernel_norms_min
valid_parallel_conv_convlayer_1_h3_max_x_max_u
valid_parallel_conv_convlayer_1_h3_max_x_mean_u
valid_parallel_conv_convlayer_1_h3_max_x_min_u
valid_parallel_conv_convlayer_1_h3_mean_x_max_u
valid_parallel_conv_convlayer_1_h3_mean_x_mean_u
valid_parallel_conv_convlayer_1_h3_mean_x_min_u
valid_parallel_conv_convlayer_1_h3_min_x_max_u
valid_parallel_conv_convlayer_1_h3_min_x_mean_u
valid_parallel_conv_convlayer_1_h3_min_x_min_u
valid_parallel_conv_convlayer_1_h3_range_x_max_u
valid_parallel_conv_convlayer_1_h3_range_x_mean_u
valid_parallel_conv_convlayer_1_h3_range_x_min_u
valid_parallel_conv_convlayer_1_h4_kernel_norms_max
valid_parallel_conv_convlayer_1_h4_kernel_norms_mean
valid_parallel_conv_convlayer_1_h4_kernel_norms_min
valid_parallel_conv_convlayer_1_h4_max_x_max_u
valid_parallel_conv_convlayer_1_h4_max_x_mean_u
valid_parallel_conv_convlayer_1_h4_max_x_min_u
valid_parallel_conv_convlayer_1_h4_mean_x_max_u
valid_parallel_conv_convlayer_1_h4_mean_x_mean_u
valid_parallel_conv_convlayer_1_h4_mean_x_min_u
valid_parallel_conv_convlayer_1_h4_min_x_max_u
valid_parallel_conv_convlayer_1_h4_min_x_mean_u
valid_parallel_conv_convlayer_1_h4_min_x_min_u
valid_parallel_conv_convlayer_1_h4_range_x_max_u
valid_parallel_conv_convlayer_1_h4_range_x_mean_u
valid_parallel_conv_convlayer_1_h4_range_x_min_u
valid_term_0
valid_term_1_weight_decay
valid_y_col_norms_max
valid_y_col_norms_mean
valid_y_col_norms_min
valid_y_max_max_class
valid_y_mean_max_class
valid_y_min_max_class
valid_y_misclass
valid_y_nll
valid_y_row_norms_max
valid_y_row_norms_mean
valid_y_row_norms_min
Compiling accum...
ERROR (theano.gof.opt): SeqOptimizer apply MergeOptimizer
ERROR:theano.gof.opt:SeqOptimizer apply MergeOptimizer
ERROR (theano.gof.opt): Traceback:
ERROR:theano.gof.opt:Traceback:
ERROR (theano.gof.opt): Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR:theano.gof.opt:Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR (theano.gof.opt): SeqOptimizer apply <theano.gof.opt.EquilibriumOptimizer object at 0x7f9ac9e2a0d0>
ERROR:theano.gof.opt:SeqOptimizer apply <theano.gof.opt.EquilibriumOptimizer object at 0x7f9ac9e2a0d0>
ERROR (theano.gof.opt): Traceback:
ERROR:theano.gof.opt:Traceback:
ERROR (theano.gof.opt): Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 1785, in apply
gopt.apply(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR:theano.gof.opt:Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 1785, in apply
gopt.apply(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR (theano.gof.opt): SeqOptimizer apply MergeOptimizer
ERROR:theano.gof.opt:SeqOptimizer apply MergeOptimizer
ERROR (theano.gof.opt): Traceback:
ERROR:theano.gof.opt:Traceback:
ERROR (theano.gof.opt): Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR:theano.gof.opt:Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR (theano.gof.opt): SeqOptimizer apply <theano.gof.opt.EquilibriumOptimizer object at 0x7f9abca96810>
ERROR:theano.gof.opt:SeqOptimizer apply <theano.gof.opt.EquilibriumOptimizer object at 0x7f9abca96810>
ERROR (theano.gof.opt): Traceback:
ERROR:theano.gof.opt:Traceback:
ERROR (theano.gof.opt): Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 1785, in apply
gopt.apply(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR:theano.gof.opt:Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 1785, in apply
gopt.apply(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
graph size: 1158
graph size: 1154
Compiling accum done. Time elapsed: 0:01:04.146942
Monitoring step:
Epochs seen: 0
Batches seen: 0
Examples seen: 0
learning_rate: 0.100000113249
momentum: 0.49999922514
total_seconds_last_epoch: 0.0
train_h5_col_norms_max: 0.899228215218
train_h5_col_norms_mean: 0.799151003361
train_h5_col_norms_min: 0.698729097843
train_h5_max_x_max_u: 0.0475132316351
train_h5_max_x_mean_u: 0.00929783005267
train_h5_max_x_min_u: 0.0
train_h5_mean_x_max_u: 0.0284981485456
train_h5_mean_x_mean_u: 0.0038538640365
train_h5_mean_x_min_u: 0.0
train_h5_min_x_max_u: 0.0127027221024
train_h5_min_x_mean_u: 0.000834370497614
train_h5_min_x_min_u: 0.0
train_h5_range_x_max_u: 0.0374712385237
train_h5_range_x_mean_u: 0.00846346281469
train_h5_range_x_min_u: 0.0
train_h5_row_norms_max: 1.68889701366
train_h5_row_norms_mean: 1.59945118427
train_h5_row_norms_min: 1.51121270657
train_objective: 4.83721733093
train_parallel_conv_convlayer_0_h1_kernel_norms_max: 0.127521842718
train_parallel_conv_convlayer_0_h1_kernel_norms_mean: 0.114065259695
train_parallel_conv_convlayer_0_h1_kernel_norms_min: 0.102951958776
train_parallel_conv_convlayer_0_h1_max_x_max_u: 1.39545881748
train_parallel_conv_convlayer_0_h1_max_x_mean_u: 0.282851099968
train_parallel_conv_convlayer_0_h1_max_x_min_u: 0.0030705826357
train_parallel_conv_convlayer_0_h1_mean_x_max_u: 0.535210072994
train_parallel_conv_convlayer_0_h1_mean_x_mean_u: 0.0451854169369
train_parallel_conv_convlayer_0_h1_mean_x_min_u: 0.000248347932938
train_parallel_conv_convlayer_0_h1_min_x_max_u: 0.0866171121597
train_parallel_conv_convlayer_0_h1_min_x_mean_u: 0.00127937702928
train_parallel_conv_convlayer_0_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h1_range_x_max_u: 1.39241743088
train_parallel_conv_convlayer_0_h1_range_x_mean_u: 0.281571686268
train_parallel_conv_convlayer_0_h1_range_x_min_u: 0.0030705826357
train_parallel_conv_convlayer_0_h2_kernel_norms_max: 0.513461410999
train_parallel_conv_convlayer_0_h2_kernel_norms_mean: 0.501124739647
train_parallel_conv_convlayer_0_h2_kernel_norms_min: 0.48504909873
train_parallel_conv_convlayer_0_h2_max_x_max_u: 0.506728827953
train_parallel_conv_convlayer_0_h2_max_x_mean_u: 0.126975402236
train_parallel_conv_convlayer_0_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_mean_x_max_u: 0.235468417406
train_parallel_conv_convlayer_0_h2_mean_x_mean_u: 0.0276460647583
train_parallel_conv_convlayer_0_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_min_x_max_u: 0.0602164268494
train_parallel_conv_convlayer_0_h2_min_x_mean_u: 0.00115216278937
train_parallel_conv_convlayer_0_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_range_x_max_u: 0.501688122749
train_parallel_conv_convlayer_0_h2_range_x_mean_u: 0.125823259354
train_parallel_conv_convlayer_0_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_kernel_norms_max: 0.439075142145
train_parallel_conv_convlayer_0_h3_kernel_norms_mean: 0.425010442734
train_parallel_conv_convlayer_0_h3_kernel_norms_min: 0.406114637852
train_parallel_conv_convlayer_0_h3_max_x_max_u: 0.163194164634
train_parallel_conv_convlayer_0_h3_max_x_mean_u: 0.0407284386456
train_parallel_conv_convlayer_0_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_mean_x_max_u: 0.0890604779124
train_parallel_conv_convlayer_0_h3_mean_x_mean_u: 0.0122517077252
train_parallel_conv_convlayer_0_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_min_x_max_u: 0.030943678692
train_parallel_conv_convlayer_0_h3_min_x_mean_u: 0.0011246035574
train_parallel_conv_convlayer_0_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_range_x_max_u: 0.15373532474
train_parallel_conv_convlayer_0_h3_range_x_mean_u: 0.0396038554609
train_parallel_conv_convlayer_0_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_kernel_norms_max: 0.501794576645
train_parallel_conv_convlayer_0_h4_kernel_norms_mean: 0.489565014839
train_parallel_conv_convlayer_0_h4_kernel_norms_min: 0.468979150057
train_parallel_conv_convlayer_0_h4_max_x_max_u: 0.0562569312751
train_parallel_conv_convlayer_0_h4_max_x_mean_u: 0.0180198736489
train_parallel_conv_convlayer_0_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_mean_x_max_u: 0.032963167876
train_parallel_conv_convlayer_0_h4_mean_x_mean_u: 0.00789148826152
train_parallel_conv_convlayer_0_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_min_x_max_u: 0.0147683909163
train_parallel_conv_convlayer_0_h4_min_x_mean_u: 0.00186977838166
train_parallel_conv_convlayer_0_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_range_x_max_u: 0.046906132251
train_parallel_conv_convlayer_0_h4_range_x_mean_u: 0.0161500908434
train_parallel_conv_convlayer_0_h4_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h1_kernel_norms_max: 0.134173855186
train_parallel_conv_convlayer_1_h1_kernel_norms_mean: 0.115739390254
train_parallel_conv_convlayer_1_h1_kernel_norms_min: 0.101580828428
train_parallel_conv_convlayer_1_h1_max_x_max_u: 1.57272267342
train_parallel_conv_convlayer_1_h1_max_x_mean_u: 0.327420532703
train_parallel_conv_convlayer_1_h1_max_x_min_u: 0.00248197116889
train_parallel_conv_convlayer_1_h1_mean_x_max_u: 0.613493800163
train_parallel_conv_convlayer_1_h1_mean_x_mean_u: 0.0487066581845
train_parallel_conv_convlayer_1_h1_mean_x_min_u: 0.000184285963769
train_parallel_conv_convlayer_1_h1_min_x_max_u: 0.111904859543
train_parallel_conv_convlayer_1_h1_min_x_mean_u: 0.000898561207578
train_parallel_conv_convlayer_1_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h1_range_x_max_u: 1.5672352314
train_parallel_conv_convlayer_1_h1_range_x_mean_u: 0.326521784067
train_parallel_conv_convlayer_1_h1_range_x_min_u: 0.00248197116889
train_parallel_conv_convlayer_1_h2_kernel_norms_max: 0.515480697155
train_parallel_conv_convlayer_1_h2_kernel_norms_mean: 0.501338541508
train_parallel_conv_convlayer_1_h2_kernel_norms_min: 0.477708637714
train_parallel_conv_convlayer_1_h2_max_x_max_u: 0.557621538639
train_parallel_conv_convlayer_1_h2_max_x_mean_u: 0.151314437389
train_parallel_conv_convlayer_1_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_mean_x_max_u: 0.24759978056
train_parallel_conv_convlayer_1_h2_mean_x_mean_u: 0.0342446379364
train_parallel_conv_convlayer_1_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_min_x_max_u: 0.0701531097293
train_parallel_conv_convlayer_1_h2_min_x_mean_u: 0.00156809273176
train_parallel_conv_convlayer_1_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_range_x_max_u: 0.547883689404
train_parallel_conv_convlayer_1_h2_range_x_mean_u: 0.149746328592
train_parallel_conv_convlayer_1_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_kernel_norms_max: 0.44128921628
train_parallel_conv_convlayer_1_h3_kernel_norms_mean: 0.425100564957
train_parallel_conv_convlayer_1_h3_kernel_norms_min: 0.406872034073
train_parallel_conv_convlayer_1_h3_max_x_max_u: 0.223389104009
train_parallel_conv_convlayer_1_h3_max_x_mean_u: 0.0545563176274
train_parallel_conv_convlayer_1_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_mean_x_max_u: 0.125657886267
train_parallel_conv_convlayer_1_h3_mean_x_mean_u: 0.0170852653682
train_parallel_conv_convlayer_1_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_min_x_max_u: 0.043653845787
train_parallel_conv_convlayer_1_h3_min_x_mean_u: 0.00162408140022
train_parallel_conv_convlayer_1_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_range_x_max_u: 0.204979717731
train_parallel_conv_convlayer_1_h3_range_x_mean_u: 0.0529322326183
train_parallel_conv_convlayer_1_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_kernel_norms_max: 0.510994374752
train_parallel_conv_convlayer_1_h4_kernel_norms_mean: 0.49060857296
train_parallel_conv_convlayer_1_h4_kernel_norms_min: 0.475406348705
train_parallel_conv_convlayer_1_h4_max_x_max_u: 0.0681711137295
train_parallel_conv_convlayer_1_h4_max_x_mean_u: 0.0227391384542
train_parallel_conv_convlayer_1_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_mean_x_max_u: 0.0380823016167
train_parallel_conv_convlayer_1_h4_mean_x_mean_u: 0.00983765162528
train_parallel_conv_convlayer_1_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_min_x_max_u: 0.0146338390186
train_parallel_conv_convlayer_1_h4_min_x_mean_u: 0.0020497480873
train_parallel_conv_convlayer_1_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_range_x_max_u: 0.0582607425749
train_parallel_conv_convlayer_1_h4_range_x_mean_u: 0.0206893794239
train_parallel_conv_convlayer_1_h4_range_x_min_u: 0.0
train_term_0: 4.79608440399
train_term_1_weight_decay: 0.0406233482063
train_y_col_norms_max: 1.66509783268
train_y_col_norms_mean: 1.60232138634
train_y_col_norms_min: 1.53496730328
train_y_max_max_class: 0.0086937174201
train_y_mean_max_class: 0.00853613484651
train_y_min_max_class: 0.00838274415582
train_y_misclass: 0.963457763195
train_y_nll: 4.7947883606
train_y_row_norms_max: 0.6521089077
train_y_row_norms_mean: 0.549801766872
train_y_row_norms_min: 0.441544055939
training_seconds_this_epoch: 0.0
valid_h5_col_norms_max: 0.899228215218
valid_h5_col_norms_mean: 0.799152433872
valid_h5_col_norms_min: 0.698729634285
valid_h5_max_x_max_u: 0.0506635047495
valid_h5_max_x_mean_u: 0.00989521760494
valid_h5_max_x_min_u: 0.0
valid_h5_mean_x_max_u: 0.0281064044684
valid_h5_mean_x_mean_u: 0.0038202854339
valid_h5_mean_x_min_u: 0.0
valid_h5_min_x_max_u: 0.0103268036619
valid_h5_min_x_mean_u: 0.000657859491184
valid_h5_min_x_min_u: 0.0
valid_h5_range_x_max_u: 0.0426414161921
valid_h5_range_x_mean_u: 0.00923735555261
valid_h5_range_x_min_u: 0.0
valid_h5_row_norms_max: 1.68890166283
valid_h5_row_norms_mean: 1.59945547581
valid_h5_row_norms_min: 1.51121068001
valid_objective: 4.83677053452
valid_parallel_conv_convlayer_0_h1_kernel_norms_max: 0.127522051334
valid_parallel_conv_convlayer_0_h1_kernel_norms_mean: 0.114065490663
valid_parallel_conv_convlayer_0_h1_kernel_norms_min: 0.102951861918
valid_parallel_conv_convlayer_0_h1_max_x_max_u: 1.45741868019
valid_parallel_conv_convlayer_0_h1_max_x_mean_u: 0.308896869421
valid_parallel_conv_convlayer_0_h1_max_x_min_u: 0.00400035455823
valid_parallel_conv_convlayer_0_h1_mean_x_max_u: 0.520340561867
valid_parallel_conv_convlayer_0_h1_mean_x_mean_u: 0.044956792146
valid_parallel_conv_convlayer_0_h1_mean_x_min_u: 0.000255925115198
valid_parallel_conv_convlayer_0_h1_min_x_max_u: 0.067897759378
valid_parallel_conv_convlayer_0_h1_min_x_mean_u: 0.000872007396538
valid_parallel_conv_convlayer_0_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h1_range_x_max_u: 1.45425355434
valid_parallel_conv_convlayer_0_h1_range_x_mean_u: 0.30802488327
valid_parallel_conv_convlayer_0_h1_range_x_min_u: 0.00400035455823
valid_parallel_conv_convlayer_0_h2_kernel_norms_max: 0.513462245464
valid_parallel_conv_convlayer_0_h2_kernel_norms_mean: 0.501125216484
valid_parallel_conv_convlayer_0_h2_kernel_norms_min: 0.485049307346
valid_parallel_conv_convlayer_0_h2_max_x_max_u: 0.537588179111
valid_parallel_conv_convlayer_0_h2_max_x_mean_u: 0.136785373092
valid_parallel_conv_convlayer_0_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_mean_x_max_u: 0.227958232164
valid_parallel_conv_convlayer_0_h2_mean_x_mean_u: 0.0273949056864
valid_parallel_conv_convlayer_0_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_min_x_max_u: 0.0503464452922
valid_parallel_conv_convlayer_0_h2_min_x_mean_u: 0.000894769094884
valid_parallel_conv_convlayer_0_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_range_x_max_u: 0.536081314087
valid_parallel_conv_convlayer_0_h2_range_x_mean_u: 0.135890632868
valid_parallel_conv_convlayer_0_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_kernel_norms_max: 0.439074546099
valid_parallel_conv_convlayer_0_h3_kernel_norms_mean: 0.425009936094
valid_parallel_conv_convlayer_0_h3_kernel_norms_min: 0.406115174294
valid_parallel_conv_convlayer_0_h3_max_x_max_u: 0.171653985977
valid_parallel_conv_convlayer_0_h3_max_x_mean_u: 0.0434133224189
valid_parallel_conv_convlayer_0_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_mean_x_max_u: 0.0872454494238
valid_parallel_conv_convlayer_0_h3_mean_x_mean_u: 0.012135556899
valid_parallel_conv_convlayer_0_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_min_x_max_u: 0.0258058942854
valid_parallel_conv_convlayer_0_h3_min_x_mean_u: 0.00087039830396
valid_parallel_conv_convlayer_0_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_range_x_max_u: 0.165369138122
valid_parallel_conv_convlayer_0_h3_range_x_mean_u: 0.0425429232419
valid_parallel_conv_convlayer_0_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_kernel_norms_max: 0.50179374218
valid_parallel_conv_convlayer_0_h4_kernel_norms_mean: 0.489563822746
valid_parallel_conv_convlayer_0_h4_kernel_norms_min: 0.46897906065
valid_parallel_conv_convlayer_0_h4_max_x_max_u: 0.0594280548394
valid_parallel_conv_convlayer_0_h4_max_x_mean_u: 0.0190476030111
valid_parallel_conv_convlayer_0_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_mean_x_max_u: 0.0325198955834
valid_parallel_conv_convlayer_0_h4_mean_x_mean_u: 0.00783205311745
valid_parallel_conv_convlayer_0_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_min_x_max_u: 0.0119618531317
valid_parallel_conv_convlayer_0_h4_min_x_mean_u: 0.00150397408288
valid_parallel_conv_convlayer_0_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_range_x_max_u: 0.0511941090226
valid_parallel_conv_convlayer_0_h4_range_x_mean_u: 0.0175436269492
valid_parallel_conv_convlayer_0_h4_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h1_kernel_norms_max: 0.134174033999
valid_parallel_conv_convlayer_1_h1_kernel_norms_mean: 0.115739285946
valid_parallel_conv_convlayer_1_h1_kernel_norms_min: 0.101580992341
valid_parallel_conv_convlayer_1_h1_max_x_max_u: 1.68509399891
valid_parallel_conv_convlayer_1_h1_max_x_mean_u: 0.359272092581
valid_parallel_conv_convlayer_1_h1_max_x_min_u: 0.00441553117707
valid_parallel_conv_convlayer_1_h1_mean_x_max_u: 0.594760715961
valid_parallel_conv_convlayer_1_h1_mean_x_mean_u: 0.0483435206115
valid_parallel_conv_convlayer_1_h1_mean_x_min_u: 0.000247983756708
valid_parallel_conv_convlayer_1_h1_min_x_max_u: 0.0942582041025
valid_parallel_conv_convlayer_1_h1_min_x_mean_u: 0.000608630070928
valid_parallel_conv_convlayer_1_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h1_range_x_max_u: 1.68120539188
valid_parallel_conv_convlayer_1_h1_range_x_mean_u: 0.358663469553
valid_parallel_conv_convlayer_1_h1_range_x_min_u: 0.00441553117707
valid_parallel_conv_convlayer_1_h2_kernel_norms_max: 0.515479505062
valid_parallel_conv_convlayer_1_h2_kernel_norms_mean: 0.501338064671
valid_parallel_conv_convlayer_1_h2_kernel_norms_min: 0.477708250284
valid_parallel_conv_convlayer_1_h2_max_x_max_u: 0.599702298641
valid_parallel_conv_convlayer_1_h2_max_x_mean_u: 0.163859352469
valid_parallel_conv_convlayer_1_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_mean_x_max_u: 0.239698961377
valid_parallel_conv_convlayer_1_h2_mean_x_mean_u: 0.0338903963566
valid_parallel_conv_convlayer_1_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_min_x_max_u: 0.0547201484442
valid_parallel_conv_convlayer_1_h2_min_x_mean_u: 0.00122625380754
valid_parallel_conv_convlayer_1_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_range_x_max_u: 0.594869911671
valid_parallel_conv_convlayer_1_h2_range_x_mean_u: 0.16263307631
valid_parallel_conv_convlayer_1_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_kernel_norms_max: 0.441289931536
valid_parallel_conv_convlayer_1_h3_kernel_norms_mean: 0.425100207329
valid_parallel_conv_convlayer_1_h3_kernel_norms_min: 0.406871408224
valid_parallel_conv_convlayer_1_h3_max_x_max_u: 0.238650366664
valid_parallel_conv_convlayer_1_h3_max_x_mean_u: 0.0587837472558
valid_parallel_conv_convlayer_1_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_mean_x_max_u: 0.123887874186
valid_parallel_conv_convlayer_1_h3_mean_x_mean_u: 0.0169101301581
valid_parallel_conv_convlayer_1_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_min_x_max_u: 0.0362699180841
valid_parallel_conv_convlayer_1_h3_min_x_mean_u: 0.00121681962628
valid_parallel_conv_convlayer_1_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_range_x_max_u: 0.226467847824
valid_parallel_conv_convlayer_1_h3_range_x_mean_u: 0.0575669333339
valid_parallel_conv_convlayer_1_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_kernel_norms_max: 0.510995864868
valid_parallel_conv_convlayer_1_h4_kernel_norms_mean: 0.490609139204
valid_parallel_conv_convlayer_1_h4_kernel_norms_min: 0.475407242775
valid_parallel_conv_convlayer_1_h4_max_x_max_u: 0.0737471729517
valid_parallel_conv_convlayer_1_h4_max_x_mean_u: 0.0240912232548
valid_parallel_conv_convlayer_1_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_mean_x_max_u: 0.0374924577773
valid_parallel_conv_convlayer_1_h4_mean_x_mean_u: 0.00975235272199
valid_parallel_conv_convlayer_1_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_min_x_max_u: 0.0120760099962
valid_parallel_conv_convlayer_1_h4_min_x_mean_u: 0.00158882816322
valid_parallel_conv_convlayer_1_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_range_x_max_u: 0.0647638365626
valid_parallel_conv_convlayer_1_h4_range_x_mean_u: 0.0225023943931
valid_parallel_conv_convlayer_1_h4_range_x_min_u: 0.0
valid_term_0: 4.79603767395
valid_term_1_weight_decay: 0.0406233929098
valid_y_col_norms_max: 1.66509592533
valid_y_col_norms_mean: 1.60231876373
valid_y_col_norms_min: 1.53496801853
valid_y_max_max_class: 0.00872329901904
valid_y_mean_max_class: 0.00853414926678
valid_y_min_max_class: 0.00835891719908
valid_y_misclass: 0.962635755539
valid_y_nll: 4.79477596283
valid_y_row_norms_max: 0.652107954025
valid_y_row_norms_mean: 0.549801409245
valid_y_row_norms_min: 0.441544651985
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive.pkl done. Time elapsed: 0.586090 seconds
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/monitor.py:573: UserWarning: Trained model saved without indicating yaml_src
'indicating yaml_src')
Time this epoch: 0:04:09.848298
Monitoring step:
Epochs seen: 1
Batches seen: 189
Examples seen: 24192
learning_rate: 0.0995122715831
momentum: 0.49999922514
total_seconds_last_epoch: 0.0
train_h5_col_norms_max: 0.906052649021
train_h5_col_norms_mean: 0.798457682133
train_h5_col_norms_min: 0.698196172714
train_h5_max_x_max_u: 1.09047603607
train_h5_max_x_mean_u: 0.199399873614
train_h5_max_x_min_u: 0.0
train_h5_mean_x_max_u: 0.761857151985
train_h5_mean_x_mean_u: 0.0910970792174
train_h5_mean_x_min_u: 0.0
train_h5_min_x_max_u: 0.406227201223
train_h5_min_x_mean_u: 0.0217617247254
train_h5_min_x_min_u: 0.0
train_h5_range_x_max_u: 0.898805439472
train_h5_range_x_mean_u: 0.177638217807
train_h5_range_x_min_u: 0.0
train_h5_row_norms_max: 1.68716108799
train_h5_row_norms_mean: 1.59806966782
train_h5_row_norms_min: 1.51398015022
train_objective: 3.93358445168
train_parallel_conv_convlayer_0_h1_kernel_norms_max: 0.295005738735
train_parallel_conv_convlayer_0_h1_kernel_norms_mean: 0.143323644996
train_parallel_conv_convlayer_0_h1_kernel_norms_min: 0.099972307682
train_parallel_conv_convlayer_0_h1_max_x_max_u: 8.47702312469
train_parallel_conv_convlayer_0_h1_max_x_mean_u: 0.465105444193
train_parallel_conv_convlayer_0_h1_max_x_min_u: 0.00312465196475
train_parallel_conv_convlayer_0_h1_mean_x_max_u: 3.52779579163
train_parallel_conv_convlayer_0_h1_mean_x_mean_u: 0.146425366402
train_parallel_conv_convlayer_0_h1_mean_x_min_u: 0.000217756489292
train_parallel_conv_convlayer_0_h1_min_x_max_u: 0.523096740246
train_parallel_conv_convlayer_0_h1_min_x_mean_u: 0.00942011270672
train_parallel_conv_convlayer_0_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h1_range_x_max_u: 8.46925544739
train_parallel_conv_convlayer_0_h1_range_x_mean_u: 0.455685257912
train_parallel_conv_convlayer_0_h1_range_x_min_u: 0.00312465196475
train_parallel_conv_convlayer_0_h2_kernel_norms_max: 0.520512282848
train_parallel_conv_convlayer_0_h2_kernel_norms_mean: 0.505191743374
train_parallel_conv_convlayer_0_h2_kernel_norms_min: 0.489069670439
train_parallel_conv_convlayer_0_h2_max_x_max_u: 3.2428715229
train_parallel_conv_convlayer_0_h2_max_x_mean_u: 0.449477821589
train_parallel_conv_convlayer_0_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_mean_x_max_u: 1.27296888828
train_parallel_conv_convlayer_0_h2_mean_x_mean_u: 0.0769472941756
train_parallel_conv_convlayer_0_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_min_x_max_u: 0.379222720861
train_parallel_conv_convlayer_0_h2_min_x_mean_u: 0.00177052535582
train_parallel_conv_convlayer_0_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_range_x_max_u: 3.22772932053
train_parallel_conv_convlayer_0_h2_range_x_mean_u: 0.44770732522
train_parallel_conv_convlayer_0_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_kernel_norms_max: 0.459286540747
train_parallel_conv_convlayer_0_h3_kernel_norms_mean: 0.430063128471
train_parallel_conv_convlayer_0_h3_kernel_norms_min: 0.404975384474
train_parallel_conv_convlayer_0_h3_max_x_max_u: 1.66647982597
train_parallel_conv_convlayer_0_h3_max_x_mean_u: 0.240846291184
train_parallel_conv_convlayer_0_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_mean_x_max_u: 0.687196969986
train_parallel_conv_convlayer_0_h3_mean_x_mean_u: 0.0494535900652
train_parallel_conv_convlayer_0_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_min_x_max_u: 0.1095386222
train_parallel_conv_convlayer_0_h3_min_x_mean_u: 0.000909629743546
train_parallel_conv_convlayer_0_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_range_x_max_u: 1.65253162384
train_parallel_conv_convlayer_0_h3_range_x_mean_u: 0.239936664701
train_parallel_conv_convlayer_0_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_kernel_norms_max: 0.569004237652
train_parallel_conv_convlayer_0_h4_kernel_norms_mean: 0.498202353716
train_parallel_conv_convlayer_0_h4_kernel_norms_min: 0.467228531837
train_parallel_conv_convlayer_0_h4_max_x_max_u: 1.30465805531
train_parallel_conv_convlayer_0_h4_max_x_mean_u: 0.238525673747
train_parallel_conv_convlayer_0_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_mean_x_max_u: 0.63062953949
train_parallel_conv_convlayer_0_h4_mean_x_mean_u: 0.0907590463758
train_parallel_conv_convlayer_0_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_min_x_max_u: 0.154370427132
train_parallel_conv_convlayer_0_h4_min_x_mean_u: 0.010528229177
train_parallel_conv_convlayer_0_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_range_x_max_u: 1.22183787823
train_parallel_conv_convlayer_0_h4_range_x_mean_u: 0.227997362614
train_parallel_conv_convlayer_0_h4_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h1_kernel_norms_max: 0.229743465781
train_parallel_conv_convlayer_1_h1_kernel_norms_mean: 0.157685935497
train_parallel_conv_convlayer_1_h1_kernel_norms_min: 0.101432539523
train_parallel_conv_convlayer_1_h1_max_x_max_u: 4.82054328918
train_parallel_conv_convlayer_1_h1_max_x_mean_u: 0.466979324818
train_parallel_conv_convlayer_1_h1_max_x_min_u: 0.00421174615622
train_parallel_conv_convlayer_1_h1_mean_x_max_u: 1.8673030138
train_parallel_conv_convlayer_1_h1_mean_x_mean_u: 0.166777223349
train_parallel_conv_convlayer_1_h1_mean_x_min_u: 0.000363576400559
train_parallel_conv_convlayer_1_h1_min_x_max_u: 0.454939305782
train_parallel_conv_convlayer_1_h1_min_x_mean_u: 0.0111547643319
train_parallel_conv_convlayer_1_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h1_range_x_max_u: 4.80887126923
train_parallel_conv_convlayer_1_h1_range_x_mean_u: 0.455824673176
train_parallel_conv_convlayer_1_h1_range_x_min_u: 0.00421174615622
train_parallel_conv_convlayer_1_h2_kernel_norms_max: 0.604686617851
train_parallel_conv_convlayer_1_h2_kernel_norms_mean: 0.508789181709
train_parallel_conv_convlayer_1_h2_kernel_norms_min: 0.482075065374
train_parallel_conv_convlayer_1_h2_max_x_max_u: 3.15043473244
train_parallel_conv_convlayer_1_h2_max_x_mean_u: 0.413772016764
train_parallel_conv_convlayer_1_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_mean_x_max_u: 1.29719126225
train_parallel_conv_convlayer_1_h2_mean_x_mean_u: 0.158457040787
train_parallel_conv_convlayer_1_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_min_x_max_u: 0.429977655411
train_parallel_conv_convlayer_1_h2_min_x_mean_u: 0.0083533031866
train_parallel_conv_convlayer_1_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_range_x_max_u: 3.13645768166
train_parallel_conv_convlayer_1_h2_range_x_mean_u: 0.405418753624
train_parallel_conv_convlayer_1_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_kernel_norms_max: 0.471830397844
train_parallel_conv_convlayer_1_h3_kernel_norms_mean: 0.43078944087
train_parallel_conv_convlayer_1_h3_kernel_norms_min: 0.410564661026
train_parallel_conv_convlayer_1_h3_max_x_max_u: 1.64746940136
train_parallel_conv_convlayer_1_h3_max_x_mean_u: 0.25980001688
train_parallel_conv_convlayer_1_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_mean_x_max_u: 1.07898831367
train_parallel_conv_convlayer_1_h3_mean_x_mean_u: 0.0916478708386
train_parallel_conv_convlayer_1_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_min_x_max_u: 0.245408758521
train_parallel_conv_convlayer_1_h3_min_x_mean_u: 0.00410270690918
train_parallel_conv_convlayer_1_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_range_x_max_u: 1.63857913017
train_parallel_conv_convlayer_1_h3_range_x_mean_u: 0.255697339773
train_parallel_conv_convlayer_1_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_kernel_norms_max: 0.554291903973
train_parallel_conv_convlayer_1_h4_kernel_norms_mean: 0.502486586571
train_parallel_conv_convlayer_1_h4_kernel_norms_min: 0.474787533283
train_parallel_conv_convlayer_1_h4_max_x_max_u: 1.51688826084
train_parallel_conv_convlayer_1_h4_max_x_mean_u: 0.28171736002
train_parallel_conv_convlayer_1_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_mean_x_max_u: 0.976242184639
train_parallel_conv_convlayer_1_h4_mean_x_mean_u: 0.137441575527
train_parallel_conv_convlayer_1_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_min_x_max_u: 0.32486730814
train_parallel_conv_convlayer_1_h4_min_x_mean_u: 0.0238393545151
train_parallel_conv_convlayer_1_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_range_x_max_u: 1.33618175983
train_parallel_conv_convlayer_1_h4_range_x_mean_u: 0.257878035307
train_parallel_conv_convlayer_1_h4_range_x_min_u: 0.0
train_term_0: 3.89868593216
train_term_1_weight_decay: 0.0408675596118
train_y_col_norms_max: 1.66813337803
train_y_col_norms_mean: 1.60313785076
train_y_col_norms_min: 1.5389662981
train_y_max_max_class: 0.132982820272
train_y_mean_max_class: 0.0768535137177
train_y_min_max_class: 0.0320051424205
train_y_misclass: 0.853628635406
train_y_nll: 3.81483197212
train_y_row_norms_max: 0.649808049202
train_y_row_norms_mean: 0.550083816051
train_y_row_norms_min: 0.440504938364
training_seconds_this_epoch: 249.847824097
valid_h5_col_norms_max: 0.906051635742
valid_h5_col_norms_mean: 0.798457384109
valid_h5_col_norms_min: 0.698195934296
valid_h5_max_x_max_u: 1.14654648304
valid_h5_max_x_mean_u: 0.221995994449
valid_h5_max_x_min_u: 0.0
valid_h5_mean_x_max_u: 0.746114313602
valid_h5_mean_x_mean_u: 0.0911874249578
valid_h5_mean_x_min_u: 0.0
valid_h5_min_x_max_u: 0.322563737631
valid_h5_min_x_mean_u: 0.0133730769157
valid_h5_min_x_min_u: 0.0
valid_h5_range_x_max_u: 1.02671778202
valid_h5_range_x_mean_u: 0.208622887731
valid_h5_range_x_min_u: 0.0
valid_h5_row_norms_max: 1.68716394901
valid_h5_row_norms_mean: 1.59806871414
valid_h5_row_norms_min: 1.5139799118
valid_objective: 3.90573358536
valid_parallel_conv_convlayer_0_h1_kernel_norms_max: 0.295005679131
valid_parallel_conv_convlayer_0_h1_kernel_norms_mean: 0.143323540688
valid_parallel_conv_convlayer_0_h1_kernel_norms_min: 0.0999723449349
valid_parallel_conv_convlayer_0_h1_max_x_max_u: 9.02118015289
valid_parallel_conv_convlayer_0_h1_max_x_mean_u: 0.506429433823
valid_parallel_conv_convlayer_0_h1_max_x_min_u: 0.0074302861467
valid_parallel_conv_convlayer_0_h1_mean_x_max_u: 3.43547821045
valid_parallel_conv_convlayer_0_h1_mean_x_mean_u: 0.145967051387
valid_parallel_conv_convlayer_0_h1_mean_x_min_u: 0.000280655454844
valid_parallel_conv_convlayer_0_h1_min_x_max_u: 0.424710422754
valid_parallel_conv_convlayer_0_h1_min_x_mean_u: 0.00657970039174
valid_parallel_conv_convlayer_0_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h1_range_x_max_u: 9.01894283295
valid_parallel_conv_convlayer_0_h1_range_x_mean_u: 0.499849766493
valid_parallel_conv_convlayer_0_h1_range_x_min_u: 0.0074302861467
valid_parallel_conv_convlayer_0_h2_kernel_norms_max: 0.520512759686
valid_parallel_conv_convlayer_0_h2_kernel_norms_mean: 0.505192697048
valid_parallel_conv_convlayer_0_h2_kernel_norms_min: 0.489069104195
valid_parallel_conv_convlayer_0_h2_max_x_max_u: 3.60932588577
valid_parallel_conv_convlayer_0_h2_max_x_mean_u: 0.508396208286
valid_parallel_conv_convlayer_0_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_mean_x_max_u: 1.21401929855
valid_parallel_conv_convlayer_0_h2_mean_x_mean_u: 0.0756087452173
valid_parallel_conv_convlayer_0_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_min_x_max_u: 0.35655015707
valid_parallel_conv_convlayer_0_h2_min_x_mean_u: 0.00124717201106
valid_parallel_conv_convlayer_0_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_range_x_max_u: 3.60456228256
valid_parallel_conv_convlayer_0_h2_range_x_mean_u: 0.507149100304
valid_parallel_conv_convlayer_0_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_kernel_norms_max: 0.459286868572
valid_parallel_conv_convlayer_0_h3_kernel_norms_mean: 0.430062830448
valid_parallel_conv_convlayer_0_h3_kernel_norms_min: 0.404974997044
valid_parallel_conv_convlayer_0_h3_max_x_max_u: 1.81288993359
valid_parallel_conv_convlayer_0_h3_max_x_mean_u: 0.265914857388
valid_parallel_conv_convlayer_0_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_mean_x_max_u: 0.660882055759
valid_parallel_conv_convlayer_0_h3_mean_x_mean_u: 0.0488095544279
valid_parallel_conv_convlayer_0_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_min_x_max_u: 0.0808309912682
valid_parallel_conv_convlayer_0_h3_min_x_mean_u: 0.000564830901567
valid_parallel_conv_convlayer_0_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_range_x_max_u: 1.79930126667
valid_parallel_conv_convlayer_0_h3_range_x_mean_u: 0.265350013971
valid_parallel_conv_convlayer_0_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_kernel_norms_max: 0.569003880024
valid_parallel_conv_convlayer_0_h4_kernel_norms_mean: 0.498202770948
valid_parallel_conv_convlayer_0_h4_kernel_norms_min: 0.467229008675
valid_parallel_conv_convlayer_0_h4_max_x_max_u: 1.52152407169
valid_parallel_conv_convlayer_0_h4_max_x_mean_u: 0.267918646336
valid_parallel_conv_convlayer_0_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_mean_x_max_u: 0.616094410419
valid_parallel_conv_convlayer_0_h4_mean_x_mean_u: 0.0898435339332
valid_parallel_conv_convlayer_0_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_min_x_max_u: 0.108178287745
valid_parallel_conv_convlayer_0_h4_min_x_mean_u: 0.00647181132808
valid_parallel_conv_convlayer_0_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_range_x_max_u: 1.4627790451
valid_parallel_conv_convlayer_0_h4_range_x_mean_u: 0.261446833611
valid_parallel_conv_convlayer_0_h4_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h1_kernel_norms_max: 0.229743078351
valid_parallel_conv_convlayer_1_h1_kernel_norms_mean: 0.157686159015
valid_parallel_conv_convlayer_1_h1_kernel_norms_min: 0.101432487369
valid_parallel_conv_convlayer_1_h1_max_x_max_u: 5.26281261444
valid_parallel_conv_convlayer_1_h1_max_x_mean_u: 0.501139879227
valid_parallel_conv_convlayer_1_h1_max_x_min_u: 0.00828118622303
valid_parallel_conv_convlayer_1_h1_mean_x_max_u: 1.79832446575
valid_parallel_conv_convlayer_1_h1_mean_x_mean_u: 0.166468858719
valid_parallel_conv_convlayer_1_h1_mean_x_min_u: 0.000536154198926
valid_parallel_conv_convlayer_1_h1_min_x_max_u: 0.383785456419
valid_parallel_conv_convlayer_1_h1_min_x_mean_u: 0.00768909975886
valid_parallel_conv_convlayer_1_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h1_range_x_max_u: 5.25521326065
valid_parallel_conv_convlayer_1_h1_range_x_mean_u: 0.493450850248
valid_parallel_conv_convlayer_1_h1_range_x_min_u: 0.00828118622303
valid_parallel_conv_convlayer_1_h2_kernel_norms_max: 0.604687333107
valid_parallel_conv_convlayer_1_h2_kernel_norms_mean: 0.508788049221
valid_parallel_conv_convlayer_1_h2_kernel_norms_min: 0.482075303793
valid_parallel_conv_convlayer_1_h2_max_x_max_u: 3.6336581707
valid_parallel_conv_convlayer_1_h2_max_x_mean_u: 0.445889472961
valid_parallel_conv_convlayer_1_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_mean_x_max_u: 1.22942006588
valid_parallel_conv_convlayer_1_h2_mean_x_mean_u: 0.158477500081
valid_parallel_conv_convlayer_1_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_min_x_max_u: 0.380403876305
valid_parallel_conv_convlayer_1_h2_min_x_mean_u: 0.00473578507081
valid_parallel_conv_convlayer_1_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_range_x_max_u: 3.62608551979
valid_parallel_conv_convlayer_1_h2_range_x_mean_u: 0.441153675318
valid_parallel_conv_convlayer_1_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_kernel_norms_max: 0.471830666065
valid_parallel_conv_convlayer_1_h3_kernel_norms_mean: 0.430788457394
valid_parallel_conv_convlayer_1_h3_kernel_norms_min: 0.410565286875
valid_parallel_conv_convlayer_1_h3_max_x_max_u: 1.76917767525
valid_parallel_conv_convlayer_1_h3_max_x_mean_u: 0.282502830029
valid_parallel_conv_convlayer_1_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_mean_x_max_u: 1.06102824211
valid_parallel_conv_convlayer_1_h3_mean_x_mean_u: 0.0917065888643
valid_parallel_conv_convlayer_1_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_min_x_max_u: 0.164935156703
valid_parallel_conv_convlayer_1_h3_min_x_mean_u: 0.00154042628128
valid_parallel_conv_convlayer_1_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_range_x_max_u: 1.76730728149
valid_parallel_conv_convlayer_1_h3_range_x_mean_u: 0.280962377787
valid_parallel_conv_convlayer_1_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_kernel_norms_max: 0.554291963577
valid_parallel_conv_convlayer_1_h4_kernel_norms_mean: 0.502485871315
valid_parallel_conv_convlayer_1_h4_kernel_norms_min: 0.474788039923
valid_parallel_conv_convlayer_1_h4_max_x_max_u: 1.54615664482
valid_parallel_conv_convlayer_1_h4_max_x_mean_u: 0.307971358299
valid_parallel_conv_convlayer_1_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_mean_x_max_u: 0.949277937412
valid_parallel_conv_convlayer_1_h4_mean_x_mean_u: 0.137811824679
valid_parallel_conv_convlayer_1_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_min_x_max_u: 0.160014584661
valid_parallel_conv_convlayer_1_h4_min_x_mean_u: 0.00845441687852
valid_parallel_conv_convlayer_1_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_range_x_max_u: 1.47909700871
valid_parallel_conv_convlayer_1_h4_range_x_mean_u: 0.299516916275
valid_parallel_conv_convlayer_1_h4_range_x_min_u: 0.0
valid_term_0: 3.87470126152
valid_term_1_weight_decay: 0.0408675037324
valid_y_col_norms_max: 1.66813051701
valid_y_col_norms_mean: 1.6031358242
valid_y_col_norms_min: 1.53896427155
valid_y_max_max_class: 0.15305390954
valid_y_mean_max_class: 0.0772568807006
valid_y_min_max_class: 0.0271530412138
valid_y_misclass: 0.849864065647
valid_y_nll: 3.79825377464
valid_y_row_norms_max: 0.649808943272
valid_y_row_norms_mean: 0.550084531307
valid_y_row_norms_min: 0.440504521132
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive.pkl done. Time elapsed: 0.534946 seconds
monitoring channel is valid_y_nll
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_recent.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_recent.pkl done. Time elapsed: 0.533378 seconds
Time this epoch: 0:04:10.815861
Monitoring step:
Epochs seen: 2
Batches seen: 378
Examples seen: 48384
learning_rate: 0.0990249440074
momentum: 0.502262055874
total_seconds_last_epoch: 690.223876953
train_h5_col_norms_max: 0.90671736002
train_h5_col_norms_mean: 0.798042654991
train_h5_col_norms_min: 0.696655094624
train_h5_max_x_max_u: 1.58407080173
train_h5_max_x_mean_u: 0.345134079456
train_h5_max_x_min_u: 0.0
train_h5_mean_x_max_u: 0.886536121368
train_h5_mean_x_mean_u: 0.109607256949
train_h5_mean_x_min_u: 0.0
train_h5_min_x_max_u: 0.343673914671
train_h5_min_x_mean_u: 0.00764586962759
train_h5_min_x_min_u: 0.0
train_h5_range_x_max_u: 1.50917744637
train_h5_range_x_mean_u: 0.337488234043
train_h5_range_x_min_u: 0.0
train_h5_row_norms_max: 1.68683862686
train_h5_row_norms_mean: 1.59724318981
train_h5_row_norms_min: 1.51687538624
train_objective: 3.45549058914
train_parallel_conv_convlayer_0_h1_kernel_norms_max: 0.489313006401
train_parallel_conv_convlayer_0_h1_kernel_norms_mean: 0.176306292415
train_parallel_conv_convlayer_0_h1_kernel_norms_min: 0.109685793519
train_parallel_conv_convlayer_0_h1_max_x_max_u: 8.49013233185
train_parallel_conv_convlayer_0_h1_max_x_mean_u: 0.581461012363
train_parallel_conv_convlayer_0_h1_max_x_min_u: 0.00363519415259
train_parallel_conv_convlayer_0_h1_mean_x_max_u: 3.45463871956
train_parallel_conv_convlayer_0_h1_mean_x_mean_u: 0.168899670243
train_parallel_conv_convlayer_0_h1_mean_x_min_u: 0.000218425208004
train_parallel_conv_convlayer_0_h1_min_x_max_u: 0.541983187199
train_parallel_conv_convlayer_0_h1_min_x_mean_u: 0.0105377957225
train_parallel_conv_convlayer_0_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h1_range_x_max_u: 8.48217105865
train_parallel_conv_convlayer_0_h1_range_x_mean_u: 0.5709233284
train_parallel_conv_convlayer_0_h1_range_x_min_u: 0.00363519415259
train_parallel_conv_convlayer_0_h2_kernel_norms_max: 0.594672441483
train_parallel_conv_convlayer_0_h2_kernel_norms_mean: 0.512998104095
train_parallel_conv_convlayer_0_h2_kernel_norms_min: 0.492839038372
train_parallel_conv_convlayer_0_h2_max_x_max_u: 4.27903747559
train_parallel_conv_convlayer_0_h2_max_x_mean_u: 0.717085540295
train_parallel_conv_convlayer_0_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_mean_x_max_u: 2.28330826759
train_parallel_conv_convlayer_0_h2_mean_x_mean_u: 0.124060474336
train_parallel_conv_convlayer_0_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_min_x_max_u: 0.888219416142
train_parallel_conv_convlayer_0_h2_min_x_mean_u: 0.00244691665284
train_parallel_conv_convlayer_0_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h2_range_x_max_u: 4.27495479584
train_parallel_conv_convlayer_0_h2_range_x_mean_u: 0.714638352394
train_parallel_conv_convlayer_0_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_kernel_norms_max: 0.552426636219
train_parallel_conv_convlayer_0_h3_kernel_norms_mean: 0.444584161043
train_parallel_conv_convlayer_0_h3_kernel_norms_min: 0.407795727253
train_parallel_conv_convlayer_0_h3_max_x_max_u: 3.13990545273
train_parallel_conv_convlayer_0_h3_max_x_mean_u: 0.447307050228
train_parallel_conv_convlayer_0_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_mean_x_max_u: 1.32652020454
train_parallel_conv_convlayer_0_h3_mean_x_mean_u: 0.0968764275312
train_parallel_conv_convlayer_0_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_min_x_max_u: 0.246468260884
train_parallel_conv_convlayer_0_h3_min_x_mean_u: 0.00146183185279
train_parallel_conv_convlayer_0_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h3_range_x_max_u: 3.13013648987
train_parallel_conv_convlayer_0_h3_range_x_mean_u: 0.445845127106
train_parallel_conv_convlayer_0_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_kernel_norms_max: 0.697723150253
train_parallel_conv_convlayer_0_h4_kernel_norms_mean: 0.523361980915
train_parallel_conv_convlayer_0_h4_kernel_norms_min: 0.472826331854
train_parallel_conv_convlayer_0_h4_max_x_max_u: 1.82907652855
train_parallel_conv_convlayer_0_h4_max_x_mean_u: 0.456562638283
train_parallel_conv_convlayer_0_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_mean_x_max_u: 0.828687250614
train_parallel_conv_convlayer_0_h4_mean_x_mean_u: 0.123961105943
train_parallel_conv_convlayer_0_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_min_x_max_u: 0.223433226347
train_parallel_conv_convlayer_0_h4_min_x_mean_u: 0.00598476547748
train_parallel_conv_convlayer_0_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_0_h4_range_x_max_u: 1.79401361942
train_parallel_conv_convlayer_0_h4_range_x_mean_u: 0.450577795506
train_parallel_conv_convlayer_0_h4_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h1_kernel_norms_max: 0.362680464983
train_parallel_conv_convlayer_1_h1_kernel_norms_mean: 0.207464158535
train_parallel_conv_convlayer_1_h1_kernel_norms_min: 0.106586754322
train_parallel_conv_convlayer_1_h1_max_x_max_u: 6.40107011795
train_parallel_conv_convlayer_1_h1_max_x_mean_u: 0.677732646465
train_parallel_conv_convlayer_1_h1_max_x_min_u: 0.00505520496517
train_parallel_conv_convlayer_1_h1_mean_x_max_u: 2.24661064148
train_parallel_conv_convlayer_1_h1_mean_x_mean_u: 0.232000291348
train_parallel_conv_convlayer_1_h1_mean_x_min_u: 0.000251832243521
train_parallel_conv_convlayer_1_h1_min_x_max_u: 0.583386659622
train_parallel_conv_convlayer_1_h1_min_x_mean_u: 0.0155272400007
train_parallel_conv_convlayer_1_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h1_range_x_max_u: 6.39599657059
train_parallel_conv_convlayer_1_h1_range_x_mean_u: 0.662205457687
train_parallel_conv_convlayer_1_h1_range_x_min_u: 0.00505520496517
train_parallel_conv_convlayer_1_h2_kernel_norms_max: 0.791261017323
train_parallel_conv_convlayer_1_h2_kernel_norms_mean: 0.525717079639
train_parallel_conv_convlayer_1_h2_kernel_norms_min: 0.492962568998
train_parallel_conv_convlayer_1_h2_max_x_max_u: 5.4395108223
train_parallel_conv_convlayer_1_h2_max_x_mean_u: 0.805915772915
train_parallel_conv_convlayer_1_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_mean_x_max_u: 2.06599450111
train_parallel_conv_convlayer_1_h2_mean_x_mean_u: 0.269269913435
train_parallel_conv_convlayer_1_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_min_x_max_u: 0.630409777164
train_parallel_conv_convlayer_1_h2_min_x_mean_u: 0.00974809378386
train_parallel_conv_convlayer_1_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h2_range_x_max_u: 5.43676424026
train_parallel_conv_convlayer_1_h2_range_x_mean_u: 0.79616767168
train_parallel_conv_convlayer_1_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_kernel_norms_max: 0.579361915588
train_parallel_conv_convlayer_1_h3_kernel_norms_mean: 0.451009869576
train_parallel_conv_convlayer_1_h3_kernel_norms_min: 0.413096368313
train_parallel_conv_convlayer_1_h3_max_x_max_u: 2.4846599102
train_parallel_conv_convlayer_1_h3_max_x_mean_u: 0.505421578884
train_parallel_conv_convlayer_1_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_mean_x_max_u: 1.46230173111
train_parallel_conv_convlayer_1_h3_mean_x_mean_u: 0.114504881203
train_parallel_conv_convlayer_1_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_min_x_max_u: 0.23105597496
train_parallel_conv_convlayer_1_h3_min_x_mean_u: 0.001295090653
train_parallel_conv_convlayer_1_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h3_range_x_max_u: 2.4829313755
train_parallel_conv_convlayer_1_h3_range_x_mean_u: 0.504126369953
train_parallel_conv_convlayer_1_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_kernel_norms_max: 0.764138579369
train_parallel_conv_convlayer_1_h4_kernel_norms_mean: 0.530962049961
train_parallel_conv_convlayer_1_h4_kernel_norms_min: 0.473069578409
train_parallel_conv_convlayer_1_h4_max_x_max_u: 2.27716469765
train_parallel_conv_convlayer_1_h4_max_x_mean_u: 0.445860505104
train_parallel_conv_convlayer_1_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_mean_x_max_u: 1.11516714096
train_parallel_conv_convlayer_1_h4_mean_x_mean_u: 0.134469747543
train_parallel_conv_convlayer_1_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_min_x_max_u: 0.132180556655
train_parallel_conv_convlayer_1_h4_min_x_mean_u: 0.00412181252614
train_parallel_conv_convlayer_1_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_1_h4_range_x_max_u: 2.22947049141
train_parallel_conv_convlayer_1_h4_range_x_mean_u: 0.441738754511
train_parallel_conv_convlayer_1_h4_range_x_min_u: 0.0
train_term_0: 3.4129357338
train_term_1_weight_decay: 0.0416230931878
train_y_col_norms_max: 1.6927895546
train_y_col_norms_mean: 1.60520637035
train_y_col_norms_min: 1.53575587273
train_y_max_max_class: 0.301825553179
train_y_mean_max_class: 0.127698779106
train_y_min_max_class: 0.0284801926464
train_y_misclass: 0.747065067291
train_y_nll: 3.30584859848
train_y_row_norms_max: 0.648541748524
train_y_row_norms_mean: 0.550803303719
train_y_row_norms_min: 0.439042061567
training_seconds_this_epoch: 250.816085815
valid_h5_col_norms_max: 0.906716525555
valid_h5_col_norms_mean: 0.798040628433
valid_h5_col_norms_min: 0.696653842926
valid_h5_max_x_max_u: 1.67854833603
valid_h5_max_x_mean_u: 0.385626792908
valid_h5_max_x_min_u: 0.0
valid_h5_mean_x_max_u: 0.823898792267
valid_h5_mean_x_mean_u: 0.109809935093
valid_h5_mean_x_min_u: 0.0
valid_h5_min_x_max_u: 0.243083953857
valid_h5_min_x_mean_u: 0.00341552100144
valid_h5_min_x_min_u: 0.0
valid_h5_range_x_max_u: 1.65398263931
valid_h5_range_x_mean_u: 0.382211327553
valid_h5_range_x_min_u: 0.0
valid_h5_row_norms_max: 1.686835289
valid_h5_row_norms_mean: 1.59724700451
valid_h5_row_norms_min: 1.51687633991
valid_objective: 3.44146132469
valid_parallel_conv_convlayer_0_h1_kernel_norms_max: 0.48931312561
valid_parallel_conv_convlayer_0_h1_kernel_norms_mean: 0.176306173205
valid_parallel_conv_convlayer_0_h1_kernel_norms_min: 0.109685868025
valid_parallel_conv_convlayer_0_h1_max_x_max_u: 8.85342216492
valid_parallel_conv_convlayer_0_h1_max_x_mean_u: 0.626966834068
valid_parallel_conv_convlayer_0_h1_max_x_min_u: 0.00835212692618
valid_parallel_conv_convlayer_0_h1_mean_x_max_u: 3.36678147316
valid_parallel_conv_convlayer_0_h1_mean_x_mean_u: 0.168438434601
valid_parallel_conv_convlayer_0_h1_mean_x_min_u: 0.00041660660645
valid_parallel_conv_convlayer_0_h1_min_x_max_u: 0.397448658943
valid_parallel_conv_convlayer_0_h1_min_x_mean_u: 0.0069158738479
valid_parallel_conv_convlayer_0_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h1_range_x_max_u: 8.85342216492
valid_parallel_conv_convlayer_0_h1_range_x_mean_u: 0.620051026344
valid_parallel_conv_convlayer_0_h1_range_x_min_u: 0.00835212692618
valid_parallel_conv_convlayer_0_h2_kernel_norms_max: 0.594673275948
valid_parallel_conv_convlayer_0_h2_kernel_norms_mean: 0.512997508049
valid_parallel_conv_convlayer_0_h2_kernel_norms_min: 0.492839097977
valid_parallel_conv_convlayer_0_h2_max_x_max_u: 4.35841989517
valid_parallel_conv_convlayer_0_h2_max_x_mean_u: 0.787409901619
valid_parallel_conv_convlayer_0_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_mean_x_max_u: 2.22882175446
valid_parallel_conv_convlayer_0_h2_mean_x_mean_u: 0.122500211
valid_parallel_conv_convlayer_0_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_min_x_max_u: 0.664290964603
valid_parallel_conv_convlayer_0_h2_min_x_mean_u: 0.001258776756
valid_parallel_conv_convlayer_0_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h2_range_x_max_u: 4.35634183884
valid_parallel_conv_convlayer_0_h2_range_x_mean_u: 0.786150932312
valid_parallel_conv_convlayer_0_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_kernel_norms_max: 0.552426576614
valid_parallel_conv_convlayer_0_h3_kernel_norms_mean: 0.444584220648
valid_parallel_conv_convlayer_0_h3_kernel_norms_min: 0.407794803381
valid_parallel_conv_convlayer_0_h3_max_x_max_u: 3.42797875404
valid_parallel_conv_convlayer_0_h3_max_x_mean_u: 0.479245573282
valid_parallel_conv_convlayer_0_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_mean_x_max_u: 1.24778211117
valid_parallel_conv_convlayer_0_h3_mean_x_mean_u: 0.0964429676533
valid_parallel_conv_convlayer_0_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_min_x_max_u: 0.160823628306
valid_parallel_conv_convlayer_0_h3_min_x_mean_u: 0.00054066919256
valid_parallel_conv_convlayer_0_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h3_range_x_max_u: 3.42037153244
valid_parallel_conv_convlayer_0_h3_range_x_mean_u: 0.478704929352
valid_parallel_conv_convlayer_0_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_kernel_norms_max: 0.697722911835
valid_parallel_conv_convlayer_0_h4_kernel_norms_mean: 0.523361444473
valid_parallel_conv_convlayer_0_h4_kernel_norms_min: 0.472826629877
valid_parallel_conv_convlayer_0_h4_max_x_max_u: 1.99054694176
valid_parallel_conv_convlayer_0_h4_max_x_mean_u: 0.511556506157
valid_parallel_conv_convlayer_0_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_mean_x_max_u: 0.766903162003
valid_parallel_conv_convlayer_0_h4_mean_x_mean_u: 0.124849721789
valid_parallel_conv_convlayer_0_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_min_x_max_u: 0.169701620936
valid_parallel_conv_convlayer_0_h4_min_x_mean_u: 0.00299464305863
valid_parallel_conv_convlayer_0_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_0_h4_range_x_max_u: 1.9780305624
valid_parallel_conv_convlayer_0_h4_range_x_mean_u: 0.508561849594
valid_parallel_conv_convlayer_0_h4_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h1_kernel_norms_max: 0.362681150436
valid_parallel_conv_convlayer_1_h1_kernel_norms_mean: 0.207464054227
valid_parallel_conv_convlayer_1_h1_kernel_norms_min: 0.106586933136
valid_parallel_conv_convlayer_1_h1_max_x_max_u: 6.66239976883
valid_parallel_conv_convlayer_1_h1_max_x_mean_u: 0.721830606461
valid_parallel_conv_convlayer_1_h1_max_x_min_u: 0.0115130655468
valid_parallel_conv_convlayer_1_h1_mean_x_max_u: 2.15081119537
valid_parallel_conv_convlayer_1_h1_mean_x_mean_u: 0.231660664082
valid_parallel_conv_convlayer_1_h1_mean_x_min_u: 0.000451299420092
valid_parallel_conv_convlayer_1_h1_min_x_max_u: 0.471650928259
valid_parallel_conv_convlayer_1_h1_min_x_mean_u: 0.0103273298591
valid_parallel_conv_convlayer_1_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h1_range_x_max_u: 6.65628480911
valid_parallel_conv_convlayer_1_h1_range_x_mean_u: 0.711503207684
valid_parallel_conv_convlayer_1_h1_range_x_min_u: 0.0115130655468
valid_parallel_conv_convlayer_1_h2_kernel_norms_max: 0.791259646416
valid_parallel_conv_convlayer_1_h2_kernel_norms_mean: 0.525717914104
valid_parallel_conv_convlayer_1_h2_kernel_norms_min: 0.492961645126
valid_parallel_conv_convlayer_1_h2_max_x_max_u: 5.92206192017
valid_parallel_conv_convlayer_1_h2_max_x_mean_u: 0.862460196018
valid_parallel_conv_convlayer_1_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_mean_x_max_u: 1.94417667389
valid_parallel_conv_convlayer_1_h2_mean_x_mean_u: 0.269337356091
valid_parallel_conv_convlayer_1_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_min_x_max_u: 0.514207184315
valid_parallel_conv_convlayer_1_h2_min_x_mean_u: 0.00497236754745
valid_parallel_conv_convlayer_1_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h2_range_x_max_u: 5.92206192017
valid_parallel_conv_convlayer_1_h2_range_x_mean_u: 0.857487857342
valid_parallel_conv_convlayer_1_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_kernel_norms_max: 0.579361736774
valid_parallel_conv_convlayer_1_h3_kernel_norms_mean: 0.451009660959
valid_parallel_conv_convlayer_1_h3_kernel_norms_min: 0.413095593452
valid_parallel_conv_convlayer_1_h3_max_x_max_u: 2.59400081635
valid_parallel_conv_convlayer_1_h3_max_x_mean_u: 0.55203551054
valid_parallel_conv_convlayer_1_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_mean_x_max_u: 1.42622315884
valid_parallel_conv_convlayer_1_h3_mean_x_mean_u: 0.114242553711
valid_parallel_conv_convlayer_1_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_min_x_max_u: 0.132261544466
valid_parallel_conv_convlayer_1_h3_min_x_mean_u: 0.000350362533936
valid_parallel_conv_convlayer_1_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h3_range_x_max_u: 2.59400081635
valid_parallel_conv_convlayer_1_h3_range_x_mean_u: 0.551685214043
valid_parallel_conv_convlayer_1_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_kernel_norms_max: 0.764139771461
valid_parallel_conv_convlayer_1_h4_kernel_norms_mean: 0.530962347984
valid_parallel_conv_convlayer_1_h4_kernel_norms_min: 0.47306984663
valid_parallel_conv_convlayer_1_h4_max_x_max_u: 2.43427181244
valid_parallel_conv_convlayer_1_h4_max_x_mean_u: 0.507980942726
valid_parallel_conv_convlayer_1_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_mean_x_max_u: 0.983184814453
valid_parallel_conv_convlayer_1_h4_mean_x_mean_u: 0.133856862783
valid_parallel_conv_convlayer_1_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_min_x_max_u: 0.034651812166
valid_parallel_conv_convlayer_1_h4_min_x_mean_u: 0.000932405120693
valid_parallel_conv_convlayer_1_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_1_h4_range_x_max_u: 2.42422795296
valid_parallel_conv_convlayer_1_h4_range_x_mean_u: 0.507048547268
valid_parallel_conv_convlayer_1_h4_range_x_min_u: 0.0
valid_term_0: 3.40211772919
valid_term_1_weight_decay: 0.0416231043637
valid_y_col_norms_max: 1.69279277325
valid_y_col_norms_mean: 1.60520493984
valid_y_col_norms_min: 1.53575646877
valid_y_max_max_class: 0.331602334976
valid_y_mean_max_class: 0.12965041399
valid_y_min_max_class: 0.0234878007323
valid_y_misclass: 0.75203794241
valid_y_nll: 3.28953194618
valid_y_row_norms_max: 0.648540854454
valid_y_row_norms_mean: 0.550802350044
valid_y_row_norms_min: 0.439043015242
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive.pkl done. Time elapsed: 0.540695 seconds
monitoring channel is valid_y_nll
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_recent.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_recent.pkl done. Time elapsed: 0.539576 seconds
Time this epoch: 0:04:11.480547
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-29-c7cf1da1badc> in <module>()
----> 1 train.main_loop()
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/train.pyc in main_loop(self, time_budget)
213 "continues.")
214 self.model.monitor.report_epoch()
--> 215 extension_continue = self.run_callbacks_and_monitoring()
216 if self.save_freq > 0 and \
217 self.model.monitor.get_epochs_seen() % self.save_freq == 0:
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/train.pyc in run_callbacks_and_monitoring(self)
240 extension wants to stop learning.
241 """
--> 242 self.model.monitor()
243 continue_learning = True
244 for extension in self.extensions:
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/monitor.pyc in __call__(self)
255 # X is a flat (not nested) tuple
256 self.run_prereqs(X, d)
--> 257 a(*X)
258 actual_ne += self._flat_data_specs[0].np_batch_size(X)
259 # end for X
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/compile/function_module.pyc in __call__(self, *args, **kwargs)
593 t0_fn = time.time()
594 try:
--> 595 outputs = self.fn()
596 except Exception:
597 if hasattr(self.fn, 'position_of_error'):
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/op.pyc in rval(p, i, o, n)
739 if ctx is graph.NoContext:
740 # default arguments are stored in the closure of `rval`
--> 741 def rval(p=p, i=node_input_storage, o=node_output_storage, n=node):
742 r = p(n, [x[0] for x in i], o)
743 for o in node.outputs:
KeyboardInterrupt:
Content source: Neuroglycerin/neukrill-net-work
Similar notebooks: