In [1]:
import pylearn2.utils
import pylearn2.config
import theano
import neukrill_net.dense_dataset
import neukrill_net.utils
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import holoviews as hl
%load_ext holoviews.ipython
import sklearn.metrics
Using gpu device 0: Tesla K40c
:0: FutureWarning: IPython widgets are experimental and may change in the future.
Welcome to the HoloViews IPython extension! (http://ioam.github.io/holoviews/)
Available magics: %compositor, %opts, %params, %view, %%labels, %%opts, %%view
<matplotlib.figure.Figure at 0x7f70ed5d2890>
<matplotlib.figure.Figure at 0x7f70ed5d2f50>
<matplotlib.figure.Figure at 0x7f70ed5d2d50>
In [2]:
cd ..
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/neukrill-net-work
In [125]:
import pylearn2.space
In [126]:
final_shape = (48,48)
vector_size = 100
In [127]:
input_space = pylearn2.space.CompositeSpace([
pylearn2.space.Conv2DSpace(shape=final_shape,num_channels=1,axes=['b',0,1,'c']),
pylearn2.space.VectorSpace(vector_size)
])
In [128]:
import pylearn2.models.mlp
import pylearn2.blocks
First, we have to instantiate the above layers as their own MLP objects. Originally, I thought these should have an input_source to specify the inputs they take, turns out nested MLPs do not have input or target sources. Instantiating each:
In [129]:
convlayer = pylearn2.models.mlp.MLP(
layer_name="convlayer",
batch_size=128,
layers=[pylearn2.models.mlp.ConvRectifiedLinear(
layer_name='h1',
output_channels=48,
irange=0.025,
init_bias=0,
kernel_shape=[8,8],
pool_shape=[2,2],
pool_stride=[2,2],
max_kernel_norm=1.9365
),
pylearn2.models.mlp.ConvRectifiedLinear(
layer_name='h2',
output_channels=96,
irange=0.025,
init_bias=0,
kernel_shape=[5,5],
pool_shape=[2,2],
pool_stride=[2,2],
max_kernel_norm=1.9365
),
pylearn2.models.mlp.ConvRectifiedLinear(
layer_name='h3',
output_channels=128,
irange=0.025,
init_bias=0,
kernel_shape=[3,3],
pool_shape=[2,2],
pool_stride=[2,2],
max_kernel_norm=1.9365
),
pylearn2.models.mlp.ConvRectifiedLinear(
layer_name='h4',
output_channels=128,
irange=0.025,
init_bias=0,
kernel_shape=[3,3],
pool_shape=[2,2],
pool_stride=[2,2],
max_kernel_norm=1.9365
)
]
)
Can't figure out what the layer is called that just acts as a dummy so putting in a single MLP layer in the mean time. Could cause us problems.
In [130]:
passthrough = pylearn2.models.mlp.MLP(
layer_name="passthrough",
batch_size=128,
layers=[pylearn2.models.mlp.RectifiedLinear(
dim=256,
max_col_norm=1.9,
layer_name='h1p5',
istdev=0.05,
W_lr_scale=0.25,
b_lr_scale=0.25)])
Then we can initialise our CompositeLayer with these two stacks of convolutional layers. Have to define dictionary mapping which of the inputs in the composite space supplied goes to which component of the space.
In [131]:
inputs_to_layers = {0:[0],1:[1]}
compositelayer = pylearn2.models.mlp.CompositeLayer(
layer_name="parallel_conv",
layers=[convlayer,passthrough],
inputs_to_layers=inputs_to_layers)
Unfortunately, it turns out we also have to put a FlattenerLayer around this so that the output of this layer will play nicely with the fully connected layer following this:
In [132]:
flattened = pylearn2.models.mlp.FlattenerLayer(raw_layer=compositelayer)
Now we need to connect this composite layer to the rest of the network, which is a single fully connected layer and the softmax output layer. To do this, we instantiate another MLP object, in which the first layer is this composite layer. This also when we use the composite input space we defined above.
In [133]:
n_classes=121
In [134]:
main_mlp =None
In [135]:
main_mlp = pylearn2.models.mlp.MLP(
batch_size=128,
input_space=input_space,
input_source=['img_1','img_2'],
layers=[
flattened,
pylearn2.models.mlp.RectifiedLinear(
dim=1024,
max_col_norm=1.9,
layer_name='h5',
istdev=0.05,
W_lr_scale=0.25,
b_lr_scale=0.25),
pylearn2.models.mlp.Softmax(
n_classes=121,
max_col_norm=1.9365,
layer_name='y',
istdev=0.05,
W_lr_scale=0.25,
b_lr_scale=0.25
)
]
)
Input shape: (48, 48)
Detector space: (41, 41)
Output space: (21, 21)
Input shape: (21, 21)
Detector space: (17, 17)
Output space: (9, 9)
Input shape: (9, 9)
Detector space: (7, 7)
Output space: (4, 4)
Input shape: (4, 4)
Detector space: (2, 2)
Output space: (1, 1)
To test this model we need a dataset that's going to supply the input data in the correct format. This should be a tuple of 4D arrays returns by the iterator in the tuple containing the input and target batches. We can create this pretty easily by just making a Dataset that inherits our old ListDataset and creates an iterator that contains two FlyIterators.
In [136]:
import neukrill_net.image_directory_dataset
import copy
In [137]:
reload(neukrill_net.image_directory_dataset)
Out[137]:
<module 'neukrill_net.image_directory_dataset' from '/afs/inf.ed.ac.uk/user/s08/s0805516/repos/neukrill-net-tools/neukrill_net/image_directory_dataset.pyc'>
In [138]:
class PassthroughIterator(object):
def __init__(self, *args, **keyargs):
keyargs['rng'] = np.random.RandomState(42)
self.iterator_1 = neukrill_net.image_directory_dataset.FlyIterator(*args,**keyargs)
self.cached = np.zeros((keyargs['num_batches']*keyargs['batch_size'],vector_size))
self.cached = self.cached.astype(np.float32)
self.batch_size = keyargs['batch_size']
self.stochastic=False
self.num_examples = self.iterator_1.num_examples
self.index = 0
def __iter__(self):
return self
def next(self):
# get a batch from both iterators:
Xbatch1,ybatch1 = self.iterator_1.next()
vectorbatch = self.cached[self.index*self.batch_size:(self.index+1)*self.batch_size,:]
self.index += 1
return Xbatch1,vectorbatch,ybatch1
In [139]:
class PassthroughDataset(neukrill_net.image_directory_dataset.ListDataset):
def iterator(self, mode=None, batch_size=None, num_batches=None, rng=None,
data_specs=None, return_tuple=False):
if not num_batches:
num_batches = int(len(self.X)/batch_size)
iterator = PassthroughIterator(dataset=self, batch_size=batch_size,
num_batches=num_batches,
final_shape=self.run_settings["final_shape"],
rng=None,mode=mode)
return iterator
In [140]:
import neukrill_net.augment
import os
In [141]:
dataset = PassthroughDataset(
transformer=neukrill_net.augment.RandomAugment(
units='float',
rotate=[0,90,180,270],
rotate_is_resizable=0,
flip=1,
resize=final_shape,
normalise={'global_or_pixel':'global',
'mu': 0.957,
'sigma': 0.142}
),
settings_path=os.path.abspath("settings.json"),
run_settings_path=os.path.abspath("run_settings/replicate_8aug.json"),
force=True
)
Testing this new dataset iterator:
In [142]:
iterator = dataset.iterator(mode='even_shuffled_sequential',batch_size=128)
In [143]:
X1,v,y = iterator.next()
Checking that the vector being produced is the right size:
In [144]:
print(v)
print(v.shape)
[[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
...,
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]
[ 0. 0. 0. ..., 0. 0. 0.]]
(128, 100)
Looks good. Image double check:
In [145]:
hl.Image(X1[0].squeeze())
Out[145]:
The rest of the train object stays the same, apart from the save path and that the algorithm will have to load one of these new ParallelDataset objects for its validation set. So, we're missing:
It's worth noting that when we define the cost and the weight decay we have to address the new convolutional layers inside the composite layer.
In [146]:
import pylearn2.training_algorithms.sgd
import pylearn2.costs.mlp.dropout
import pylearn2.costs.cost
import pylearn2.termination_criteria
In [147]:
algorithm = pylearn2.training_algorithms.sgd.SGD(
train_iteration_mode='even_shuffled_sequential',
monitor_iteration_mode='even_sequential',
batch_size=128,
learning_rate=0.1,
learning_rule= pylearn2.training_algorithms.learning_rule.Momentum(
init_momentum=0.5
),
monitoring_dataset={
'train':dataset,
'valid':PassthroughDataset(
transformer=neukrill_net.augment.RandomAugment(
units='float',
rotate=[0,90,180,270],
rotate_is_resizable=0,
flip=1,
resize=final_shape,
normalise={'global_or_pixel':'global',
'mu': 0.957,
'sigma': 0.142}
),
settings_path=os.path.abspath("settings.json"),
run_settings_path=os.path.abspath("run_settings/replicate_8aug.json"),
force=True, training_set_mode='validation'
)
},
cost=pylearn2.costs.cost.SumOfCosts(
costs=[
pylearn2.costs.mlp.dropout.Dropout(
input_include_probs={'h5':0.5},
input_scales={'h5':2.0}),
pylearn2.costs.mlp.WeightDecay(coeffs={'parallel_conv':0.00005,
'h5':0.00005})
]
),
termination_criterion=pylearn2.termination_criteria.EpochCounter(max_epochs=500)
)
In [148]:
import pylearn2.train_extensions
import pylearn2.train_extensions.best_params
In [149]:
extensions = [
pylearn2.training_algorithms.learning_rule.MomentumAdjustor(
start=1,
saturate=200,
final_momentum=0.95
),
pylearn2.training_algorithms.sgd.LinearDecayOverEpoch(
start=1,
saturate=200,
decay_factor=0.025
),
pylearn2.train_extensions.best_params.MonitorBasedSaveBest(
channel_name='valid_y_nll',
save_path='/disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl'
),
pylearn2.training_algorithms.sgd.MonitorBasedLRAdjuster(
high_trigger=1.0,
low_trigger=0.999,
grow_amt=1.012,
shrink_amt=0.986,
max_lr=0.4,
min_lr=0.00005,
channel_name='valid_y_nll'
)
]
In [150]:
import pylearn2.train
In [151]:
train = pylearn2.train.Train(
dataset=dataset,
model=main_mlp,
algorithm=algorithm,
extensions=extensions,
save_path='/disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl',
save_freq=1
)
We can live with that warning.
Now, attempting to run the model:
In [152]:
train.main_loop()
Parameter and initial learning rate summary:
h1p5_W: 0.0250000003725
h1p5_b: 0.0250000003725
h1_W: 0.10000000149
h1_b: 0.10000000149
h2_W: 0.10000000149
h2_b: 0.10000000149
h3_W: 0.10000000149
h3_b: 0.10000000149
h4_W: 0.10000000149
h4_b: 0.10000000149
h5_W: 0.0250000003725
h5_b: 0.0250000003725
softmax_b: 0.0250000003725
softmax_W: 0.0250000003725
Compiling sgd_update...
Compiling sgd_update done. Time elapsed: 6.494259 seconds
compiling begin_record_entry...
compiling begin_record_entry done. Time elapsed: 1.324182 seconds
Monitored channels:
learning_rate
momentum
total_seconds_last_epoch
train_h5_col_norms_max
train_h5_col_norms_mean
train_h5_col_norms_min
train_h5_max_x_max_u
train_h5_max_x_mean_u
train_h5_max_x_min_u
train_h5_mean_x_max_u
train_h5_mean_x_mean_u
train_h5_mean_x_min_u
train_h5_min_x_max_u
train_h5_min_x_mean_u
train_h5_min_x_min_u
train_h5_range_x_max_u
train_h5_range_x_mean_u
train_h5_range_x_min_u
train_h5_row_norms_max
train_h5_row_norms_mean
train_h5_row_norms_min
train_objective
train_parallel_conv_convlayer_h1_kernel_norms_max
train_parallel_conv_convlayer_h1_kernel_norms_mean
train_parallel_conv_convlayer_h1_kernel_norms_min
train_parallel_conv_convlayer_h1_max_x_max_u
train_parallel_conv_convlayer_h1_max_x_mean_u
train_parallel_conv_convlayer_h1_max_x_min_u
train_parallel_conv_convlayer_h1_mean_x_max_u
train_parallel_conv_convlayer_h1_mean_x_mean_u
train_parallel_conv_convlayer_h1_mean_x_min_u
train_parallel_conv_convlayer_h1_min_x_max_u
train_parallel_conv_convlayer_h1_min_x_mean_u
train_parallel_conv_convlayer_h1_min_x_min_u
train_parallel_conv_convlayer_h1_range_x_max_u
train_parallel_conv_convlayer_h1_range_x_mean_u
train_parallel_conv_convlayer_h1_range_x_min_u
train_parallel_conv_convlayer_h2_kernel_norms_max
train_parallel_conv_convlayer_h2_kernel_norms_mean
train_parallel_conv_convlayer_h2_kernel_norms_min
train_parallel_conv_convlayer_h2_max_x_max_u
train_parallel_conv_convlayer_h2_max_x_mean_u
train_parallel_conv_convlayer_h2_max_x_min_u
train_parallel_conv_convlayer_h2_mean_x_max_u
train_parallel_conv_convlayer_h2_mean_x_mean_u
train_parallel_conv_convlayer_h2_mean_x_min_u
train_parallel_conv_convlayer_h2_min_x_max_u
train_parallel_conv_convlayer_h2_min_x_mean_u
train_parallel_conv_convlayer_h2_min_x_min_u
train_parallel_conv_convlayer_h2_range_x_max_u
train_parallel_conv_convlayer_h2_range_x_mean_u
train_parallel_conv_convlayer_h2_range_x_min_u
train_parallel_conv_convlayer_h3_kernel_norms_max
train_parallel_conv_convlayer_h3_kernel_norms_mean
train_parallel_conv_convlayer_h3_kernel_norms_min
train_parallel_conv_convlayer_h3_max_x_max_u
train_parallel_conv_convlayer_h3_max_x_mean_u
train_parallel_conv_convlayer_h3_max_x_min_u
train_parallel_conv_convlayer_h3_mean_x_max_u
train_parallel_conv_convlayer_h3_mean_x_mean_u
train_parallel_conv_convlayer_h3_mean_x_min_u
train_parallel_conv_convlayer_h3_min_x_max_u
train_parallel_conv_convlayer_h3_min_x_mean_u
train_parallel_conv_convlayer_h3_min_x_min_u
train_parallel_conv_convlayer_h3_range_x_max_u
train_parallel_conv_convlayer_h3_range_x_mean_u
train_parallel_conv_convlayer_h3_range_x_min_u
train_parallel_conv_convlayer_h4_kernel_norms_max
train_parallel_conv_convlayer_h4_kernel_norms_mean
train_parallel_conv_convlayer_h4_kernel_norms_min
train_parallel_conv_convlayer_h4_max_x_max_u
train_parallel_conv_convlayer_h4_max_x_mean_u
train_parallel_conv_convlayer_h4_max_x_min_u
train_parallel_conv_convlayer_h4_mean_x_max_u
train_parallel_conv_convlayer_h4_mean_x_mean_u
train_parallel_conv_convlayer_h4_mean_x_min_u
train_parallel_conv_convlayer_h4_min_x_max_u
train_parallel_conv_convlayer_h4_min_x_mean_u
train_parallel_conv_convlayer_h4_min_x_min_u
train_parallel_conv_convlayer_h4_range_x_max_u
train_parallel_conv_convlayer_h4_range_x_mean_u
train_parallel_conv_convlayer_h4_range_x_min_u
train_parallel_conv_passthrough_h1p5_col_norms_max
train_parallel_conv_passthrough_h1p5_col_norms_mean
train_parallel_conv_passthrough_h1p5_col_norms_min
train_parallel_conv_passthrough_h1p5_max_x_max_u
train_parallel_conv_passthrough_h1p5_max_x_mean_u
train_parallel_conv_passthrough_h1p5_max_x_min_u
train_parallel_conv_passthrough_h1p5_mean_x_max_u
train_parallel_conv_passthrough_h1p5_mean_x_mean_u
train_parallel_conv_passthrough_h1p5_mean_x_min_u
train_parallel_conv_passthrough_h1p5_min_x_max_u
train_parallel_conv_passthrough_h1p5_min_x_mean_u
train_parallel_conv_passthrough_h1p5_min_x_min_u
train_parallel_conv_passthrough_h1p5_range_x_max_u
train_parallel_conv_passthrough_h1p5_range_x_mean_u
train_parallel_conv_passthrough_h1p5_range_x_min_u
train_parallel_conv_passthrough_h1p5_row_norms_max
train_parallel_conv_passthrough_h1p5_row_norms_mean
train_parallel_conv_passthrough_h1p5_row_norms_min
train_term_0
train_term_1_weight_decay
train_y_col_norms_max
train_y_col_norms_mean
train_y_col_norms_min
train_y_max_max_class
train_y_mean_max_class
train_y_min_max_class
train_y_misclass
train_y_nll
train_y_row_norms_max
train_y_row_norms_mean
train_y_row_norms_min
training_seconds_this_epoch
valid_h5_col_norms_max
valid_h5_col_norms_mean
valid_h5_col_norms_min
valid_h5_max_x_max_u
valid_h5_max_x_mean_u
valid_h5_max_x_min_u
valid_h5_mean_x_max_u
valid_h5_mean_x_mean_u
valid_h5_mean_x_min_u
valid_h5_min_x_max_u
valid_h5_min_x_mean_u
valid_h5_min_x_min_u
valid_h5_range_x_max_u
valid_h5_range_x_mean_u
valid_h5_range_x_min_u
valid_h5_row_norms_max
valid_h5_row_norms_mean
valid_h5_row_norms_min
valid_objective
valid_parallel_conv_convlayer_h1_kernel_norms_max
valid_parallel_conv_convlayer_h1_kernel_norms_mean
valid_parallel_conv_convlayer_h1_kernel_norms_min
valid_parallel_conv_convlayer_h1_max_x_max_u
valid_parallel_conv_convlayer_h1_max_x_mean_u
valid_parallel_conv_convlayer_h1_max_x_min_u
valid_parallel_conv_convlayer_h1_mean_x_max_u
valid_parallel_conv_convlayer_h1_mean_x_mean_u
valid_parallel_conv_convlayer_h1_mean_x_min_u
valid_parallel_conv_convlayer_h1_min_x_max_u
valid_parallel_conv_convlayer_h1_min_x_mean_u
valid_parallel_conv_convlayer_h1_min_x_min_u
valid_parallel_conv_convlayer_h1_range_x_max_u
valid_parallel_conv_convlayer_h1_range_x_mean_u
valid_parallel_conv_convlayer_h1_range_x_min_u
valid_parallel_conv_convlayer_h2_kernel_norms_max
valid_parallel_conv_convlayer_h2_kernel_norms_mean
valid_parallel_conv_convlayer_h2_kernel_norms_min
valid_parallel_conv_convlayer_h2_max_x_max_u
valid_parallel_conv_convlayer_h2_max_x_mean_u
valid_parallel_conv_convlayer_h2_max_x_min_u
valid_parallel_conv_convlayer_h2_mean_x_max_u
valid_parallel_conv_convlayer_h2_mean_x_mean_u
valid_parallel_conv_convlayer_h2_mean_x_min_u
valid_parallel_conv_convlayer_h2_min_x_max_u
valid_parallel_conv_convlayer_h2_min_x_mean_u
valid_parallel_conv_convlayer_h2_min_x_min_u
valid_parallel_conv_convlayer_h2_range_x_max_u
valid_parallel_conv_convlayer_h2_range_x_mean_u
valid_parallel_conv_convlayer_h2_range_x_min_u
valid_parallel_conv_convlayer_h3_kernel_norms_max
valid_parallel_conv_convlayer_h3_kernel_norms_mean
valid_parallel_conv_convlayer_h3_kernel_norms_min
valid_parallel_conv_convlayer_h3_max_x_max_u
valid_parallel_conv_convlayer_h3_max_x_mean_u
valid_parallel_conv_convlayer_h3_max_x_min_u
valid_parallel_conv_convlayer_h3_mean_x_max_u
valid_parallel_conv_convlayer_h3_mean_x_mean_u
valid_parallel_conv_convlayer_h3_mean_x_min_u
valid_parallel_conv_convlayer_h3_min_x_max_u
valid_parallel_conv_convlayer_h3_min_x_mean_u
valid_parallel_conv_convlayer_h3_min_x_min_u
valid_parallel_conv_convlayer_h3_range_x_max_u
valid_parallel_conv_convlayer_h3_range_x_mean_u
valid_parallel_conv_convlayer_h3_range_x_min_u
valid_parallel_conv_convlayer_h4_kernel_norms_max
valid_parallel_conv_convlayer_h4_kernel_norms_mean
valid_parallel_conv_convlayer_h4_kernel_norms_min
valid_parallel_conv_convlayer_h4_max_x_max_u
valid_parallel_conv_convlayer_h4_max_x_mean_u
valid_parallel_conv_convlayer_h4_max_x_min_u
valid_parallel_conv_convlayer_h4_mean_x_max_u
valid_parallel_conv_convlayer_h4_mean_x_mean_u
valid_parallel_conv_convlayer_h4_mean_x_min_u
valid_parallel_conv_convlayer_h4_min_x_max_u
valid_parallel_conv_convlayer_h4_min_x_mean_u
valid_parallel_conv_convlayer_h4_min_x_min_u
valid_parallel_conv_convlayer_h4_range_x_max_u
valid_parallel_conv_convlayer_h4_range_x_mean_u
valid_parallel_conv_convlayer_h4_range_x_min_u
valid_parallel_conv_passthrough_h1p5_col_norms_max
valid_parallel_conv_passthrough_h1p5_col_norms_mean
valid_parallel_conv_passthrough_h1p5_col_norms_min
valid_parallel_conv_passthrough_h1p5_max_x_max_u
valid_parallel_conv_passthrough_h1p5_max_x_mean_u
valid_parallel_conv_passthrough_h1p5_max_x_min_u
valid_parallel_conv_passthrough_h1p5_mean_x_max_u
valid_parallel_conv_passthrough_h1p5_mean_x_mean_u
valid_parallel_conv_passthrough_h1p5_mean_x_min_u
valid_parallel_conv_passthrough_h1p5_min_x_max_u
valid_parallel_conv_passthrough_h1p5_min_x_mean_u
valid_parallel_conv_passthrough_h1p5_min_x_min_u
valid_parallel_conv_passthrough_h1p5_range_x_max_u
valid_parallel_conv_passthrough_h1p5_range_x_mean_u
valid_parallel_conv_passthrough_h1p5_range_x_min_u
valid_parallel_conv_passthrough_h1p5_row_norms_max
valid_parallel_conv_passthrough_h1p5_row_norms_mean
valid_parallel_conv_passthrough_h1p5_row_norms_min
valid_term_0
valid_term_1_weight_decay
valid_y_col_norms_max
valid_y_col_norms_mean
valid_y_col_norms_min
valid_y_max_max_class
valid_y_mean_max_class
valid_y_min_max_class
valid_y_misclass
valid_y_nll
valid_y_row_norms_max
valid_y_row_norms_mean
valid_y_row_norms_min
Compiling accum...
ERROR (theano.gof.opt): SeqOptimizer apply MergeOptimizer
ERROR:theano.gof.opt:SeqOptimizer apply MergeOptimizer
ERROR (theano.gof.opt): Traceback:
ERROR:theano.gof.opt:Traceback:
ERROR (theano.gof.opt): Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR:theano.gof.opt:Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR (theano.gof.opt): SeqOptimizer apply MergeOptimizer
ERROR:theano.gof.opt:SeqOptimizer apply MergeOptimizer
ERROR (theano.gof.opt): Traceback:
ERROR:theano.gof.opt:Traceback:
ERROR (theano.gof.opt): Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
ERROR:theano.gof.opt:Traceback (most recent call last):
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 195, in apply
sub_prof = optimizer.optimize(fgraph)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 81, in optimize
ret = self.apply(fgraph, *args, **kwargs)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/opt.py", line 621, in apply
fgraph.replace_all_validate(pairs, 'MergeOptimizer')
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/toolbox.py", line 258, in replace_all_validate
fgraph.replace(r, new_r, reason=reason, verbose=False)
File "/afs/inf.ed.ac.uk/user/s08/s0805516/repos/Theano/theano/gof/fg.py", line 467, in replace
raise TypeError("The type of the replacement must be the same as the type of the original Variable.", r, new_r, r.type, new_r.type, str(reason))
TypeError: ('The type of the replacement must be the same as the type of the original Variable.', GpuReshape{4}.0, GpuReshape{4}.0, CudaNdarrayType(float32, 4D), CudaNdarrayType(float32, (False, False, True, True)), 'MergeOptimizer')
graph size: 717
graph size: 713
Compiling accum done. Time elapsed: 36.505606 seconds
Monitoring step:
Epochs seen: 0
Batches seen: 0
Examples seen: 0
learning_rate: 0.100000113249
momentum: 0.49999922514
total_seconds_last_epoch: 0.0
train_h5_col_norms_max: 1.09158229828
train_h5_col_norms_mean: 0.97610026598
train_h5_col_norms_min: 0.865485668182
train_h5_max_x_max_u: 0.0374856851995
train_h5_max_x_mean_u: 0.00641988078132
train_h5_max_x_min_u: 0.0
train_h5_mean_x_max_u: 0.0240020323545
train_h5_mean_x_mean_u: 0.0028201371897
train_h5_mean_x_min_u: 0.0
train_h5_min_x_max_u: 0.0103577403352
train_h5_min_x_mean_u: 0.000680151977576
train_h5_min_x_min_u: 0.0
train_h5_range_x_max_u: 0.027447886765
train_h5_range_x_mean_u: 0.00573972798884
train_h5_range_x_min_u: 0.0
train_h5_row_norms_max: 1.69188833237
train_h5_row_norms_mean: 1.59457719326
train_h5_row_norms_min: 1.4787914753
train_objective: 4.84974098206
train_parallel_conv_convlayer_h1_kernel_norms_max: 0.127521842718
train_parallel_conv_convlayer_h1_kernel_norms_mean: 0.114065259695
train_parallel_conv_convlayer_h1_kernel_norms_min: 0.102951958776
train_parallel_conv_convlayer_h1_max_x_max_u: 1.39545881748
train_parallel_conv_convlayer_h1_max_x_mean_u: 0.282851099968
train_parallel_conv_convlayer_h1_max_x_min_u: 0.0030705826357
train_parallel_conv_convlayer_h1_mean_x_max_u: 0.535210072994
train_parallel_conv_convlayer_h1_mean_x_mean_u: 0.0451854169369
train_parallel_conv_convlayer_h1_mean_x_min_u: 0.000248347932938
train_parallel_conv_convlayer_h1_min_x_max_u: 0.0866171121597
train_parallel_conv_convlayer_h1_min_x_mean_u: 0.00127937702928
train_parallel_conv_convlayer_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_h1_range_x_max_u: 1.39241743088
train_parallel_conv_convlayer_h1_range_x_mean_u: 0.281571686268
train_parallel_conv_convlayer_h1_range_x_min_u: 0.0030705826357
train_parallel_conv_convlayer_h2_kernel_norms_max: 0.513461410999
train_parallel_conv_convlayer_h2_kernel_norms_mean: 0.501124739647
train_parallel_conv_convlayer_h2_kernel_norms_min: 0.48504909873
train_parallel_conv_convlayer_h2_max_x_max_u: 0.506728827953
train_parallel_conv_convlayer_h2_max_x_mean_u: 0.126975402236
train_parallel_conv_convlayer_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_h2_mean_x_max_u: 0.235468417406
train_parallel_conv_convlayer_h2_mean_x_mean_u: 0.0276460647583
train_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h2_min_x_max_u: 0.0602164268494
train_parallel_conv_convlayer_h2_min_x_mean_u: 0.00115216278937
train_parallel_conv_convlayer_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_h2_range_x_max_u: 0.501688122749
train_parallel_conv_convlayer_h2_range_x_mean_u: 0.125823259354
train_parallel_conv_convlayer_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_h3_kernel_norms_max: 0.439075142145
train_parallel_conv_convlayer_h3_kernel_norms_mean: 0.425010442734
train_parallel_conv_convlayer_h3_kernel_norms_min: 0.406114637852
train_parallel_conv_convlayer_h3_max_x_max_u: 0.163194164634
train_parallel_conv_convlayer_h3_max_x_mean_u: 0.0407284386456
train_parallel_conv_convlayer_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_h3_mean_x_max_u: 0.0890604779124
train_parallel_conv_convlayer_h3_mean_x_mean_u: 0.0122517077252
train_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h3_min_x_max_u: 0.030943678692
train_parallel_conv_convlayer_h3_min_x_mean_u: 0.0011246035574
train_parallel_conv_convlayer_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_h3_range_x_max_u: 0.15373532474
train_parallel_conv_convlayer_h3_range_x_mean_u: 0.0396038554609
train_parallel_conv_convlayer_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_h4_kernel_norms_max: 0.501794576645
train_parallel_conv_convlayer_h4_kernel_norms_mean: 0.489565014839
train_parallel_conv_convlayer_h4_kernel_norms_min: 0.468979150057
train_parallel_conv_convlayer_h4_max_x_max_u: 0.0562569312751
train_parallel_conv_convlayer_h4_max_x_mean_u: 0.0180198736489
train_parallel_conv_convlayer_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_h4_mean_x_max_u: 0.032963167876
train_parallel_conv_convlayer_h4_mean_x_mean_u: 0.00789148826152
train_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h4_min_x_max_u: 0.0147683909163
train_parallel_conv_convlayer_h4_min_x_mean_u: 0.00186977838166
train_parallel_conv_convlayer_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_h4_range_x_max_u: 0.046906132251
train_parallel_conv_convlayer_h4_range_x_mean_u: 0.0161500908434
train_parallel_conv_convlayer_h4_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_col_norms_max: 0.613751173019
train_parallel_conv_passthrough_h1p5_col_norms_mean: 0.499514997005
train_parallel_conv_passthrough_h1p5_col_norms_min: 0.407425999641
train_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_row_norms_max: 0.879460334778
train_parallel_conv_passthrough_h1p5_row_norms_mean: 0.800288200378
train_parallel_conv_passthrough_h1p5_row_norms_min: 0.713147580624
train_term_0: 4.7942070961
train_term_1_weight_decay: 0.055980682373
train_y_col_norms_max: 1.67981696129
train_y_col_norms_mean: 1.60014212132
train_y_col_norms_min: 1.53101873398
train_y_max_max_class: 0.00848287902772
train_y_mean_max_class: 0.00840395223349
train_y_min_max_class: 0.00832598563284
train_y_misclass: 0.986068546772
train_y_nll: 4.79499483109
train_y_row_norms_max: 0.66630846262
train_y_row_norms_mean: 0.548979818821
train_y_row_norms_min: 0.446325868368
training_seconds_this_epoch: 0.0
valid_h5_col_norms_max: 1.09158086777
valid_h5_col_norms_mean: 0.976099073887
valid_h5_col_norms_min: 0.865483760834
valid_h5_max_x_max_u: 0.0394998379052
valid_h5_max_x_mean_u: 0.0068211494945
valid_h5_max_x_min_u: 0.0
valid_h5_mean_x_max_u: 0.0238124765456
valid_h5_mean_x_mean_u: 0.0027995526325
valid_h5_mean_x_min_u: 0.0
valid_h5_min_x_max_u: 0.00840456411242
valid_h5_min_x_mean_u: 0.000546186463907
valid_h5_min_x_min_u: 0.0
valid_h5_range_x_max_u: 0.0315064489841
valid_h5_range_x_mean_u: 0.00627496326342
valid_h5_range_x_min_u: 0.0
valid_h5_row_norms_max: 1.69189083576
valid_h5_row_norms_mean: 1.59457564354
valid_h5_row_norms_min: 1.47878909111
valid_objective: 4.8496799469
valid_parallel_conv_convlayer_h1_kernel_norms_max: 0.127522051334
valid_parallel_conv_convlayer_h1_kernel_norms_mean: 0.114065490663
valid_parallel_conv_convlayer_h1_kernel_norms_min: 0.102951861918
valid_parallel_conv_convlayer_h1_max_x_max_u: 1.45741868019
valid_parallel_conv_convlayer_h1_max_x_mean_u: 0.308896869421
valid_parallel_conv_convlayer_h1_max_x_min_u: 0.00400035455823
valid_parallel_conv_convlayer_h1_mean_x_max_u: 0.520340561867
valid_parallel_conv_convlayer_h1_mean_x_mean_u: 0.044956792146
valid_parallel_conv_convlayer_h1_mean_x_min_u: 0.000255925115198
valid_parallel_conv_convlayer_h1_min_x_max_u: 0.067897759378
valid_parallel_conv_convlayer_h1_min_x_mean_u: 0.000872007396538
valid_parallel_conv_convlayer_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h1_range_x_max_u: 1.45425355434
valid_parallel_conv_convlayer_h1_range_x_mean_u: 0.30802488327
valid_parallel_conv_convlayer_h1_range_x_min_u: 0.00400035455823
valid_parallel_conv_convlayer_h2_kernel_norms_max: 0.513462245464
valid_parallel_conv_convlayer_h2_kernel_norms_mean: 0.501125216484
valid_parallel_conv_convlayer_h2_kernel_norms_min: 0.485049307346
valid_parallel_conv_convlayer_h2_max_x_max_u: 0.537588179111
valid_parallel_conv_convlayer_h2_max_x_mean_u: 0.136785373092
valid_parallel_conv_convlayer_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_mean_x_max_u: 0.227958232164
valid_parallel_conv_convlayer_h2_mean_x_mean_u: 0.0273949056864
valid_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_min_x_max_u: 0.0503464452922
valid_parallel_conv_convlayer_h2_min_x_mean_u: 0.000894769094884
valid_parallel_conv_convlayer_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_range_x_max_u: 0.536081314087
valid_parallel_conv_convlayer_h2_range_x_mean_u: 0.135890632868
valid_parallel_conv_convlayer_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_kernel_norms_max: 0.439074546099
valid_parallel_conv_convlayer_h3_kernel_norms_mean: 0.425009936094
valid_parallel_conv_convlayer_h3_kernel_norms_min: 0.406115174294
valid_parallel_conv_convlayer_h3_max_x_max_u: 0.171653985977
valid_parallel_conv_convlayer_h3_max_x_mean_u: 0.0434133224189
valid_parallel_conv_convlayer_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_mean_x_max_u: 0.0872454494238
valid_parallel_conv_convlayer_h3_mean_x_mean_u: 0.012135556899
valid_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_min_x_max_u: 0.0258058942854
valid_parallel_conv_convlayer_h3_min_x_mean_u: 0.00087039830396
valid_parallel_conv_convlayer_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_range_x_max_u: 0.165369138122
valid_parallel_conv_convlayer_h3_range_x_mean_u: 0.0425429232419
valid_parallel_conv_convlayer_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_kernel_norms_max: 0.50179374218
valid_parallel_conv_convlayer_h4_kernel_norms_mean: 0.489563822746
valid_parallel_conv_convlayer_h4_kernel_norms_min: 0.46897906065
valid_parallel_conv_convlayer_h4_max_x_max_u: 0.0594280548394
valid_parallel_conv_convlayer_h4_max_x_mean_u: 0.0190476030111
valid_parallel_conv_convlayer_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_mean_x_max_u: 0.0325198955834
valid_parallel_conv_convlayer_h4_mean_x_mean_u: 0.00783205311745
valid_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_min_x_max_u: 0.0119618531317
valid_parallel_conv_convlayer_h4_min_x_mean_u: 0.00150397408288
valid_parallel_conv_convlayer_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_range_x_max_u: 0.0511941090226
valid_parallel_conv_convlayer_h4_range_x_mean_u: 0.0175436269492
valid_parallel_conv_convlayer_h4_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_col_norms_max: 0.613750815392
valid_parallel_conv_passthrough_h1p5_col_norms_mean: 0.499515920877
valid_parallel_conv_passthrough_h1p5_col_norms_min: 0.407426595688
valid_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_row_norms_max: 0.879461526871
valid_parallel_conv_passthrough_h1p5_row_norms_mean: 0.800289154053
valid_parallel_conv_passthrough_h1p5_row_norms_min: 0.713146626949
valid_term_0: 4.79291152954
valid_term_1_weight_decay: 0.0559806413949
valid_y_col_norms_max: 1.67981946468
valid_y_col_norms_mean: 1.60013973713
valid_y_col_norms_min: 1.53101766109
valid_y_max_max_class: 0.00849923957139
valid_y_mean_max_class: 0.00840315781534
valid_y_min_max_class: 0.00831533223391
valid_y_misclass: 0.98675262928
valid_y_nll: 4.79495191574
valid_y_row_norms_max: 0.666310012341
valid_y_row_norms_mean: 0.548980474472
valid_y_row_norms_min: 0.446326136589
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl done. Time elapsed: 0.421714 seconds
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/monitor.py:573: UserWarning: Trained model saved without indicating yaml_src
'indicating yaml_src')
Time this epoch: 0:01:44.927378
Monitoring step:
Epochs seen: 1
Batches seen: 189
Examples seen: 24192
learning_rate: 0.0995122715831
momentum: 0.49999922514
total_seconds_last_epoch: 0.0
train_h5_col_norms_max: 1.08959054947
train_h5_col_norms_mean: 0.97529989481
train_h5_col_norms_min: 0.86380147934
train_h5_max_x_max_u: 1.23018538952
train_h5_max_x_mean_u: 0.208481952548
train_h5_max_x_min_u: 0.0
train_h5_mean_x_max_u: 0.752106904984
train_h5_mean_x_mean_u: 0.0871087238193
train_h5_mean_x_min_u: 0.0
train_h5_min_x_max_u: 0.398169904947
train_h5_min_x_mean_u: 0.017019148916
train_h5_min_x_min_u: 0.0
train_h5_range_x_max_u: 1.08478045464
train_h5_range_x_mean_u: 0.191462770104
train_h5_range_x_min_u: 0.0
train_h5_row_norms_max: 1.69026648998
train_h5_row_norms_mean: 1.59327042103
train_h5_row_norms_min: 1.4773734808
train_objective: 3.97384262085
train_parallel_conv_convlayer_h1_kernel_norms_max: 0.333131581545
train_parallel_conv_convlayer_h1_kernel_norms_mean: 0.184635102749
train_parallel_conv_convlayer_h1_kernel_norms_min: 0.117789670825
train_parallel_conv_convlayer_h1_max_x_max_u: 6.46911334991
train_parallel_conv_convlayer_h1_max_x_mean_u: 0.65064227581
train_parallel_conv_convlayer_h1_max_x_min_u: 0.00392004102468
train_parallel_conv_convlayer_h1_mean_x_max_u: 2.74744868279
train_parallel_conv_convlayer_h1_mean_x_mean_u: 0.16380046308
train_parallel_conv_convlayer_h1_mean_x_min_u: 0.000300550425891
train_parallel_conv_convlayer_h1_min_x_max_u: 0.640564322472
train_parallel_conv_convlayer_h1_min_x_mean_u: 0.00954291131347
train_parallel_conv_convlayer_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_h1_range_x_max_u: 6.46526384354
train_parallel_conv_convlayer_h1_range_x_mean_u: 0.641099393368
train_parallel_conv_convlayer_h1_range_x_min_u: 0.00392004102468
train_parallel_conv_convlayer_h2_kernel_norms_max: 0.628861665726
train_parallel_conv_convlayer_h2_kernel_norms_mean: 0.515351593494
train_parallel_conv_convlayer_h2_kernel_norms_min: 0.492168366909
train_parallel_conv_convlayer_h2_max_x_max_u: 3.25371932983
train_parallel_conv_convlayer_h2_max_x_mean_u: 0.566276788712
train_parallel_conv_convlayer_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_h2_mean_x_max_u: 1.79206943512
train_parallel_conv_convlayer_h2_mean_x_mean_u: 0.120788760483
train_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h2_min_x_max_u: 0.842818140984
train_parallel_conv_convlayer_h2_min_x_mean_u: 0.00430322112516
train_parallel_conv_convlayer_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_h2_range_x_max_u: 3.24249458313
train_parallel_conv_convlayer_h2_range_x_mean_u: 0.561973750591
train_parallel_conv_convlayer_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_h3_kernel_norms_max: 0.482739955187
train_parallel_conv_convlayer_h3_kernel_norms_mean: 0.438877940178
train_parallel_conv_convlayer_h3_kernel_norms_min: 0.41636300087
train_parallel_conv_convlayer_h3_max_x_max_u: 1.88444685936
train_parallel_conv_convlayer_h3_max_x_mean_u: 0.396978914738
train_parallel_conv_convlayer_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_h3_mean_x_max_u: 0.907800018787
train_parallel_conv_convlayer_h3_mean_x_mean_u: 0.112529873848
train_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h3_min_x_max_u: 0.257840007544
train_parallel_conv_convlayer_h3_min_x_mean_u: 0.00332016148604
train_parallel_conv_convlayer_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_h3_range_x_max_u: 1.87446522713
train_parallel_conv_convlayer_h3_range_x_mean_u: 0.39365875721
train_parallel_conv_convlayer_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_h4_kernel_norms_max: 0.603041887283
train_parallel_conv_convlayer_h4_kernel_norms_mean: 0.511588931084
train_parallel_conv_convlayer_h4_kernel_norms_min: 0.4697689116
train_parallel_conv_convlayer_h4_max_x_max_u: 1.80087387562
train_parallel_conv_convlayer_h4_max_x_mean_u: 0.431036263704
train_parallel_conv_convlayer_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_h4_mean_x_max_u: 1.02600955963
train_parallel_conv_convlayer_h4_mean_x_mean_u: 0.168681338429
train_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h4_min_x_max_u: 0.283429682255
train_parallel_conv_convlayer_h4_min_x_mean_u: 0.0158408749849
train_parallel_conv_convlayer_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_h4_range_x_max_u: 1.7075432539
train_parallel_conv_convlayer_h4_range_x_mean_u: 0.415195375681
train_parallel_conv_convlayer_h4_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_col_norms_max: 0.613154292107
train_parallel_conv_passthrough_h1p5_col_norms_mean: 0.499029278755
train_parallel_conv_passthrough_h1p5_col_norms_min: 0.407029688358
train_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_row_norms_max: 0.878604531288
train_parallel_conv_passthrough_h1p5_row_norms_mean: 0.799508750439
train_parallel_conv_passthrough_h1p5_row_norms_min: 0.71245020628
train_term_0: 3.92011737823
train_term_1_weight_decay: 0.0562432594597
train_y_col_norms_max: 1.67875802517
train_y_col_norms_mean: 1.60158467293
train_y_col_norms_min: 1.53455460072
train_y_max_max_class: 0.137656867504
train_y_mean_max_class: 0.06653881073
train_y_min_max_class: 0.0247988291085
train_y_misclass: 0.857803404331
train_y_nll: 3.87659168243
train_y_row_norms_max: 0.668668925762
train_y_row_norms_mean: 0.549453854561
train_y_row_norms_min: 0.44723123312
training_seconds_this_epoch: 104.927200317
valid_h5_col_norms_max: 1.08959138393
valid_h5_col_norms_mean: 0.975297451019
valid_h5_col_norms_min: 0.863802611828
valid_h5_max_x_max_u: 1.28809249401
valid_h5_max_x_mean_u: 0.231059908867
valid_h5_max_x_min_u: 0.0
valid_h5_mean_x_max_u: 0.73898178339
valid_h5_mean_x_mean_u: 0.087565228343
valid_h5_mean_x_min_u: 0.0
valid_h5_min_x_max_u: 0.322153717279
valid_h5_min_x_mean_u: 0.0106128528714
valid_h5_min_x_min_u: 0.0
valid_h5_range_x_max_u: 1.23438489437
valid_h5_range_x_mean_u: 0.220447063446
valid_h5_range_x_min_u: 0.0
valid_h5_row_norms_max: 1.69027042389
valid_h5_row_norms_mean: 1.5932687521
valid_h5_row_norms_min: 1.47737240791
valid_objective: 3.9709379673
valid_parallel_conv_convlayer_h1_kernel_norms_max: 0.33313202858
valid_parallel_conv_convlayer_h1_kernel_norms_mean: 0.18463511765
valid_parallel_conv_convlayer_h1_kernel_norms_min: 0.117789514363
valid_parallel_conv_convlayer_h1_max_x_max_u: 6.7897362709
valid_parallel_conv_convlayer_h1_max_x_mean_u: 0.700226664543
valid_parallel_conv_convlayer_h1_max_x_min_u: 0.00878135673702
valid_parallel_conv_convlayer_h1_mean_x_max_u: 2.67427992821
valid_parallel_conv_convlayer_h1_mean_x_mean_u: 0.163317799568
valid_parallel_conv_convlayer_h1_mean_x_min_u: 0.000851149554364
valid_parallel_conv_convlayer_h1_min_x_max_u: 0.530711293221
valid_parallel_conv_convlayer_h1_min_x_mean_u: 0.00672636786476
valid_parallel_conv_convlayer_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h1_range_x_max_u: 6.78913831711
valid_parallel_conv_convlayer_h1_range_x_mean_u: 0.69350028038
valid_parallel_conv_convlayer_h1_range_x_min_u: 0.00878135673702
valid_parallel_conv_convlayer_h2_kernel_norms_max: 0.628861963749
valid_parallel_conv_convlayer_h2_kernel_norms_mean: 0.515351116657
valid_parallel_conv_convlayer_h2_kernel_norms_min: 0.492167264223
valid_parallel_conv_convlayer_h2_max_x_max_u: 3.36048531532
valid_parallel_conv_convlayer_h2_max_x_mean_u: 0.621810972691
valid_parallel_conv_convlayer_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_mean_x_max_u: 1.74799180031
valid_parallel_conv_convlayer_h2_mean_x_mean_u: 0.119752690196
valid_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_min_x_max_u: 0.691094756126
valid_parallel_conv_convlayer_h2_min_x_mean_u: 0.00254515348934
valid_parallel_conv_convlayer_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_range_x_max_u: 3.35344076157
valid_parallel_conv_convlayer_h2_range_x_mean_u: 0.619265913963
valid_parallel_conv_convlayer_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_kernel_norms_max: 0.482740342617
valid_parallel_conv_convlayer_h3_kernel_norms_mean: 0.438877135515
valid_parallel_conv_convlayer_h3_kernel_norms_min: 0.416362196207
valid_parallel_conv_convlayer_h3_max_x_max_u: 1.9987527132
valid_parallel_conv_convlayer_h3_max_x_mean_u: 0.427504777908
valid_parallel_conv_convlayer_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_mean_x_max_u: 0.859351456165
valid_parallel_conv_convlayer_h3_mean_x_mean_u: 0.112401023507
valid_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_min_x_max_u: 0.182121470571
valid_parallel_conv_convlayer_h3_min_x_mean_u: 0.0012267997954
valid_parallel_conv_convlayer_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_range_x_max_u: 1.99154269695
valid_parallel_conv_convlayer_h3_range_x_mean_u: 0.426278024912
valid_parallel_conv_convlayer_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_kernel_norms_max: 0.603042781353
valid_parallel_conv_convlayer_h4_kernel_norms_mean: 0.511588215828
valid_parallel_conv_convlayer_h4_kernel_norms_min: 0.469769507647
valid_parallel_conv_convlayer_h4_max_x_max_u: 1.83392596245
valid_parallel_conv_convlayer_h4_max_x_mean_u: 0.477682441473
valid_parallel_conv_convlayer_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_mean_x_max_u: 0.978989958763
valid_parallel_conv_convlayer_h4_mean_x_mean_u: 0.169315725565
valid_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_min_x_max_u: 0.149056851864
valid_parallel_conv_convlayer_h4_min_x_mean_u: 0.00492251338437
valid_parallel_conv_convlayer_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_range_x_max_u: 1.81615459919
valid_parallel_conv_convlayer_h4_range_x_mean_u: 0.472759962082
valid_parallel_conv_convlayer_h4_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_col_norms_max: 0.613154530525
valid_parallel_conv_passthrough_h1p5_col_norms_mean: 0.499029278755
valid_parallel_conv_passthrough_h1p5_col_norms_min: 0.407028913498
valid_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_row_norms_max: 0.878605902195
valid_parallel_conv_passthrough_h1p5_row_norms_mean: 0.799509704113
valid_parallel_conv_passthrough_h1p5_row_norms_min: 0.712451159954
valid_term_0: 3.90336966515
valid_term_1_weight_decay: 0.0562431626022
valid_y_col_norms_max: 1.67876040936
valid_y_col_norms_mean: 1.60158574581
valid_y_col_norms_min: 1.53455209732
valid_y_max_max_class: 0.15762488544
valid_y_mean_max_class: 0.0670693293214
valid_y_min_max_class: 0.0211698208004
valid_y_misclass: 0.856657505035
valid_y_nll: 3.86564874649
valid_y_row_norms_max: 0.668667912483
valid_y_row_norms_mean: 0.54945486784
valid_y_row_norms_min: 0.447230875492
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl done. Time elapsed: 0.403111 seconds
monitoring channel is valid_y_nll
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl done. Time elapsed: 0.400868 seconds
Time this epoch: 0:01:46.335021
Monitoring step:
Epochs seen: 2
Batches seen: 378
Examples seen: 48384
learning_rate: 0.0990249440074
momentum: 0.502262055874
total_seconds_last_epoch: 234.179168701
train_h5_col_norms_max: 1.08789992332
train_h5_col_norms_mean: 0.974682509899
train_h5_col_norms_min: 0.861658811569
train_h5_max_x_max_u: 1.53186094761
train_h5_max_x_mean_u: 0.321827679873
train_h5_max_x_min_u: 0.0
train_h5_mean_x_max_u: 0.857952654362
train_h5_mean_x_mean_u: 0.103053785861
train_h5_mean_x_min_u: 0.0
train_h5_min_x_max_u: 0.30696284771
train_h5_min_x_mean_u: 0.00707844505087
train_h5_min_x_min_u: 0.0
train_h5_range_x_max_u: 1.42881321907
train_h5_range_x_mean_u: 0.314749270678
train_h5_range_x_min_u: 0.0
train_h5_row_norms_max: 1.68864274025
train_h5_row_norms_mean: 1.59225738049
train_h5_row_norms_min: 1.47595262527
train_objective: 3.49223017693
train_parallel_conv_convlayer_h1_kernel_norms_max: 0.545070111752
train_parallel_conv_convlayer_h1_kernel_norms_mean: 0.257933348417
train_parallel_conv_convlayer_h1_kernel_norms_min: 0.132627859712
train_parallel_conv_convlayer_h1_max_x_max_u: 5.00248479843
train_parallel_conv_convlayer_h1_max_x_mean_u: 0.835381686687
train_parallel_conv_convlayer_h1_max_x_min_u: 0.00515155028552
train_parallel_conv_convlayer_h1_mean_x_max_u: 2.07331752777
train_parallel_conv_convlayer_h1_mean_x_mean_u: 0.245987579226
train_parallel_conv_convlayer_h1_mean_x_min_u: 0.000270412216196
train_parallel_conv_convlayer_h1_min_x_max_u: 0.954268455505
train_parallel_conv_convlayer_h1_min_x_mean_u: 0.0162681210786
train_parallel_conv_convlayer_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_h1_range_x_max_u: 4.99087381363
train_parallel_conv_convlayer_h1_range_x_mean_u: 0.819113910198
train_parallel_conv_convlayer_h1_range_x_min_u: 0.00515155028552
train_parallel_conv_convlayer_h2_kernel_norms_max: 0.697414815426
train_parallel_conv_convlayer_h2_kernel_norms_mean: 0.541957259178
train_parallel_conv_convlayer_h2_kernel_norms_min: 0.491711318493
train_parallel_conv_convlayer_h2_max_x_max_u: 4.41097593307
train_parallel_conv_convlayer_h2_max_x_mean_u: 0.802162647247
train_parallel_conv_convlayer_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_h2_mean_x_max_u: 2.94959354401
train_parallel_conv_convlayer_h2_mean_x_mean_u: 0.165126010776
train_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h2_min_x_max_u: 1.2465903759
train_parallel_conv_convlayer_h2_min_x_mean_u: 0.00475287437439
train_parallel_conv_convlayer_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_h2_range_x_max_u: 4.40985202789
train_parallel_conv_convlayer_h2_range_x_mean_u: 0.797409832478
train_parallel_conv_convlayer_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_h3_kernel_norms_max: 0.635496735573
train_parallel_conv_convlayer_h3_kernel_norms_mean: 0.475601941347
train_parallel_conv_convlayer_h3_kernel_norms_min: 0.417281508446
train_parallel_conv_convlayer_h3_max_x_max_u: 3.13928365707
train_parallel_conv_convlayer_h3_max_x_mean_u: 0.60772550106
train_parallel_conv_convlayer_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_h3_mean_x_max_u: 1.22233843803
train_parallel_conv_convlayer_h3_mean_x_mean_u: 0.118577077985
train_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h3_min_x_max_u: 0.195431128144
train_parallel_conv_convlayer_h3_min_x_mean_u: 0.000866635236889
train_parallel_conv_convlayer_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_h3_range_x_max_u: 3.13895440102
train_parallel_conv_convlayer_h3_range_x_mean_u: 0.606859028339
train_parallel_conv_convlayer_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_h4_kernel_norms_max: 0.760955274105
train_parallel_conv_convlayer_h4_kernel_norms_mean: 0.570158481598
train_parallel_conv_convlayer_h4_kernel_norms_min: 0.470883280039
train_parallel_conv_convlayer_h4_max_x_max_u: 2.6798658371
train_parallel_conv_convlayer_h4_max_x_mean_u: 0.640482604504
train_parallel_conv_convlayer_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_h4_mean_x_max_u: 1.3443363905
train_parallel_conv_convlayer_h4_mean_x_mean_u: 0.17930381
train_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h4_min_x_max_u: 0.175791949034
train_parallel_conv_convlayer_h4_min_x_mean_u: 0.00469225132838
train_parallel_conv_convlayer_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_h4_range_x_max_u: 2.61900639534
train_parallel_conv_convlayer_h4_range_x_mean_u: 0.635790288448
train_parallel_conv_convlayer_h4_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_col_norms_max: 0.612556219101
train_parallel_conv_passthrough_h1p5_col_norms_mean: 0.498540312052
train_parallel_conv_passthrough_h1p5_col_norms_min: 0.406630069017
train_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_row_norms_max: 0.877745628357
train_parallel_conv_passthrough_h1p5_row_norms_mean: 0.798727929592
train_parallel_conv_passthrough_h1p5_row_norms_min: 0.711752295494
train_term_0: 3.44134283066
train_term_1_weight_decay: 0.0570644550025
train_y_col_norms_max: 1.69868993759
train_y_col_norms_mean: 1.60381639004
train_y_col_norms_min: 1.53403103352
train_y_max_max_class: 0.298726797104
train_y_mean_max_class: 0.114506825805
train_y_min_max_class: 0.0269663501531
train_y_misclass: 0.770089030266
train_y_nll: 3.39156508446
train_y_row_norms_max: 0.669397473335
train_y_row_norms_mean: 0.55021905899
train_y_row_norms_min: 0.445766955614
training_seconds_this_epoch: 106.335166931
valid_h5_col_norms_max: 1.08789944649
valid_h5_col_norms_mean: 0.97468149662
valid_h5_col_norms_min: 0.861659884453
valid_h5_max_x_max_u: 1.59821951389
valid_h5_max_x_mean_u: 0.361689507961
valid_h5_max_x_min_u: 0.0
valid_h5_mean_x_max_u: 0.797124564648
valid_h5_mean_x_mean_u: 0.102893672884
valid_h5_mean_x_min_u: 0.0
valid_h5_min_x_max_u: 0.233154475689
valid_h5_min_x_mean_u: 0.00334848253988
valid_h5_min_x_min_u: 0.0
valid_h5_range_x_max_u: 1.51729023457
valid_h5_range_x_mean_u: 0.358341068029
valid_h5_range_x_min_u: 0.0
valid_h5_row_norms_max: 1.68864440918
valid_h5_row_norms_mean: 1.59225916862
valid_h5_row_norms_min: 1.47595107555
valid_objective: 3.47759723663
valid_parallel_conv_convlayer_h1_kernel_norms_max: 0.545069098473
valid_parallel_conv_convlayer_h1_kernel_norms_mean: 0.25793376565
valid_parallel_conv_convlayer_h1_kernel_norms_min: 0.132627919316
valid_parallel_conv_convlayer_h1_max_x_max_u: 5.22880077362
valid_parallel_conv_convlayer_h1_max_x_mean_u: 0.88814842701
valid_parallel_conv_convlayer_h1_max_x_min_u: 0.00446984218433
valid_parallel_conv_convlayer_h1_mean_x_max_u: 1.98691415787
valid_parallel_conv_convlayer_h1_mean_x_mean_u: 0.245638146996
valid_parallel_conv_convlayer_h1_mean_x_min_u: 0.000426635786425
valid_parallel_conv_convlayer_h1_min_x_max_u: 0.768848538399
valid_parallel_conv_convlayer_h1_min_x_mean_u: 0.0108431363478
valid_parallel_conv_convlayer_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h1_range_x_max_u: 5.22471570969
valid_parallel_conv_convlayer_h1_range_x_mean_u: 0.877305388451
valid_parallel_conv_convlayer_h1_range_x_min_u: 0.00446984218433
valid_parallel_conv_convlayer_h2_kernel_norms_max: 0.697415888309
valid_parallel_conv_convlayer_h2_kernel_norms_mean: 0.541957914829
valid_parallel_conv_convlayer_h2_kernel_norms_min: 0.491710633039
valid_parallel_conv_convlayer_h2_max_x_max_u: 4.55800580978
valid_parallel_conv_convlayer_h2_max_x_mean_u: 0.866018295288
valid_parallel_conv_convlayer_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_mean_x_max_u: 2.94080686569
valid_parallel_conv_convlayer_h2_mean_x_mean_u: 0.164317965508
valid_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_min_x_max_u: 1.07303726673
valid_parallel_conv_convlayer_h2_min_x_mean_u: 0.00243897456676
valid_parallel_conv_convlayer_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_range_x_max_u: 4.55628442764
valid_parallel_conv_convlayer_h2_range_x_mean_u: 0.863579392433
valid_parallel_conv_convlayer_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_kernel_norms_max: 0.635496258736
valid_parallel_conv_convlayer_h3_kernel_norms_mean: 0.475601166487
valid_parallel_conv_convlayer_h3_kernel_norms_min: 0.417281359434
valid_parallel_conv_convlayer_h3_max_x_max_u: 3.32993388176
valid_parallel_conv_convlayer_h3_max_x_mean_u: 0.657957673073
valid_parallel_conv_convlayer_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_mean_x_max_u: 1.15156018734
valid_parallel_conv_convlayer_h3_mean_x_mean_u: 0.118332758546
valid_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_min_x_max_u: 0.108554311097
valid_parallel_conv_convlayer_h3_min_x_mean_u: 0.000232559803408
valid_parallel_conv_convlayer_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_range_x_max_u: 3.32993388176
valid_parallel_conv_convlayer_h3_range_x_mean_u: 0.657725095749
valid_parallel_conv_convlayer_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_kernel_norms_max: 0.760954678059
valid_parallel_conv_convlayer_h4_kernel_norms_mean: 0.570158958435
valid_parallel_conv_convlayer_h4_kernel_norms_min: 0.470883905888
valid_parallel_conv_convlayer_h4_max_x_max_u: 2.80686068535
valid_parallel_conv_convlayer_h4_max_x_mean_u: 0.731145322323
valid_parallel_conv_convlayer_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_mean_x_max_u: 1.20402169228
valid_parallel_conv_convlayer_h4_mean_x_mean_u: 0.179259523749
valid_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_min_x_max_u: 0.053041357547
valid_parallel_conv_convlayer_h4_min_x_mean_u: 0.00103474932257
valid_parallel_conv_convlayer_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_range_x_max_u: 2.79055261612
valid_parallel_conv_convlayer_h4_range_x_mean_u: 0.73011058569
valid_parallel_conv_convlayer_h4_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_col_norms_max: 0.612555861473
valid_parallel_conv_passthrough_h1p5_col_norms_mean: 0.498540699482
valid_parallel_conv_passthrough_h1p5_col_norms_min: 0.406629443169
valid_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_row_norms_max: 0.877746522427
valid_parallel_conv_passthrough_h1p5_row_norms_mean: 0.798727214336
valid_parallel_conv_passthrough_h1p5_row_norms_min: 0.711753308773
valid_term_0: 3.40822958946
valid_term_1_weight_decay: 0.0570645928383
valid_y_col_norms_max: 1.69868779182
valid_y_col_norms_mean: 1.60381829739
valid_y_col_norms_min: 1.53402912617
valid_y_max_max_class: 0.327524572611
valid_y_mean_max_class: 0.114345654845
valid_y_min_max_class: 0.02344263345
valid_y_misclass: 0.771059691906
valid_y_nll: 3.38180732727
valid_y_row_norms_max: 0.669397771358
valid_y_row_norms_mean: 0.550220131874
valid_y_row_norms_min: 0.445766746998
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl done. Time elapsed: 0.404767 seconds
monitoring channel is valid_y_nll
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl done. Time elapsed: 0.405510 seconds
Time this epoch: 0:01:44.742724
Monitoring step:
Epochs seen: 3
Batches seen: 567
Examples seen: 72576
learning_rate: 0.0985374078155
momentum: 0.504522204399
total_seconds_last_epoch: 237.40625
train_h5_col_norms_max: 1.08613061905
train_h5_col_norms_mean: 0.974004864693
train_h5_col_norms_min: 0.858482003212
train_h5_max_x_max_u: 1.96456170082
train_h5_max_x_mean_u: 0.419058412313
train_h5_max_x_min_u: 0.0
train_h5_mean_x_max_u: 1.06923985481
train_h5_mean_x_mean_u: 0.133677795529
train_h5_mean_x_min_u: 0.0
train_h5_min_x_max_u: 0.374110609293
train_h5_min_x_mean_u: 0.00920701399446
train_h5_min_x_min_u: 0.0
train_h5_range_x_max_u: 1.89563429356
train_h5_range_x_mean_u: 0.409851133823
train_h5_range_x_min_u: 0.0
train_h5_row_norms_max: 1.68702030182
train_h5_row_norms_mean: 1.59115302563
train_h5_row_norms_min: 1.47453320026
train_objective: 3.15244865417
train_parallel_conv_convlayer_h1_kernel_norms_max: 0.685570180416
train_parallel_conv_convlayer_h1_kernel_norms_mean: 0.297437727451
train_parallel_conv_convlayer_h1_kernel_norms_min: 0.140764325857
train_parallel_conv_convlayer_h1_max_x_max_u: 4.62036514282
train_parallel_conv_convlayer_h1_max_x_mean_u: 0.903285324574
train_parallel_conv_convlayer_h1_max_x_min_u: 0.00377422757447
train_parallel_conv_convlayer_h1_mean_x_max_u: 1.93199086189
train_parallel_conv_convlayer_h1_mean_x_mean_u: 0.280403316021
train_parallel_conv_convlayer_h1_mean_x_min_u: 0.000443815544713
train_parallel_conv_convlayer_h1_min_x_max_u: 1.05460608006
train_parallel_conv_convlayer_h1_min_x_mean_u: 0.0187964905053
train_parallel_conv_convlayer_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_h1_range_x_max_u: 4.61562347412
train_parallel_conv_convlayer_h1_range_x_mean_u: 0.884488940239
train_parallel_conv_convlayer_h1_range_x_min_u: 0.00377422757447
train_parallel_conv_convlayer_h2_kernel_norms_max: 0.801389992237
train_parallel_conv_convlayer_h2_kernel_norms_mean: 0.571960568428
train_parallel_conv_convlayer_h2_kernel_norms_min: 0.491183102131
train_parallel_conv_convlayer_h2_max_x_max_u: 5.73084259033
train_parallel_conv_convlayer_h2_max_x_mean_u: 0.941765904427
train_parallel_conv_convlayer_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_h2_mean_x_max_u: 3.5919482708
train_parallel_conv_convlayer_h2_mean_x_mean_u: 0.1820730865
train_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h2_min_x_max_u: 1.39436197281
train_parallel_conv_convlayer_h2_min_x_mean_u: 0.00412629870698
train_parallel_conv_convlayer_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_h2_range_x_max_u: 5.72641420364
train_parallel_conv_convlayer_h2_range_x_mean_u: 0.937639534473
train_parallel_conv_convlayer_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_h3_kernel_norms_max: 0.830123722553
train_parallel_conv_convlayer_h3_kernel_norms_mean: 0.514351427555
train_parallel_conv_convlayer_h3_kernel_norms_min: 0.416572719812
train_parallel_conv_convlayer_h3_max_x_max_u: 4.3412322998
train_parallel_conv_convlayer_h3_max_x_mean_u: 0.754553496838
train_parallel_conv_convlayer_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_h3_mean_x_max_u: 1.66192686558
train_parallel_conv_convlayer_h3_mean_x_mean_u: 0.127425789833
train_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h3_min_x_max_u: 0.217100769281
train_parallel_conv_convlayer_h3_min_x_mean_u: 0.000708108884282
train_parallel_conv_convlayer_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_h3_range_x_max_u: 4.3412322998
train_parallel_conv_convlayer_h3_range_x_mean_u: 0.753844976425
train_parallel_conv_convlayer_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_h4_kernel_norms_max: 0.834669530392
train_parallel_conv_convlayer_h4_kernel_norms_mean: 0.62188833952
train_parallel_conv_convlayer_h4_kernel_norms_min: 0.475704222918
train_parallel_conv_convlayer_h4_max_x_max_u: 3.39219355583
train_parallel_conv_convlayer_h4_max_x_mean_u: 0.825605034828
train_parallel_conv_convlayer_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_h4_mean_x_max_u: 1.73541975021
train_parallel_conv_convlayer_h4_mean_x_mean_u: 0.220022365451
train_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h4_min_x_max_u: 0.291656136513
train_parallel_conv_convlayer_h4_min_x_mean_u: 0.00712435971946
train_parallel_conv_convlayer_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_h4_range_x_max_u: 3.33744263649
train_parallel_conv_convlayer_h4_range_x_mean_u: 0.818480491638
train_parallel_conv_convlayer_h4_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_col_norms_max: 0.611957073212
train_parallel_conv_passthrough_h1p5_col_norms_mean: 0.498053759336
train_parallel_conv_passthrough_h1p5_col_norms_min: 0.40623024106
train_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_row_norms_max: 0.876889169216
train_parallel_conv_passthrough_h1p5_row_norms_mean: 0.797944843769
train_parallel_conv_passthrough_h1p5_row_norms_min: 0.711056113243
train_term_0: 3.08835959435
train_term_1_weight_decay: 0.0579267516732
train_y_col_norms_max: 1.70989394188
train_y_col_norms_mean: 1.60584330559
train_y_col_norms_min: 1.53074157238
train_y_max_max_class: 0.424290567636
train_y_mean_max_class: 0.176645368338
train_y_min_max_class: 0.0359540693462
train_y_misclass: 0.756696224213
train_y_nll: 3.08741402626
train_y_row_norms_max: 0.674779176712
train_y_row_norms_mean: 0.550921320915
train_y_row_norms_min: 0.443664848804
training_seconds_this_epoch: 104.74256897
valid_h5_col_norms_max: 1.08613097668
valid_h5_col_norms_mean: 0.974003314972
valid_h5_col_norms_min: 0.858482718468
valid_h5_max_x_max_u: 2.04604268074
valid_h5_max_x_mean_u: 0.481458723545
valid_h5_max_x_min_u: 0.0
valid_h5_mean_x_max_u: 0.970400333405
valid_h5_mean_x_mean_u: 0.134035155177
valid_h5_mean_x_min_u: 0.0
valid_h5_min_x_max_u: 0.266867190599
valid_h5_min_x_mean_u: 0.00357262883335
valid_h5_min_x_min_u: 0.0
valid_h5_range_x_max_u: 2.00839757919
valid_h5_range_x_mean_u: 0.47788605094
valid_h5_range_x_min_u: 0.0
valid_h5_row_norms_max: 1.68701946735
valid_h5_row_norms_mean: 1.59115386009
valid_h5_row_norms_min: 1.47453093529
valid_objective: 3.12420320511
valid_parallel_conv_convlayer_h1_kernel_norms_max: 0.685568988323
valid_parallel_conv_convlayer_h1_kernel_norms_mean: 0.297438532114
valid_parallel_conv_convlayer_h1_kernel_norms_min: 0.14076448977
valid_parallel_conv_convlayer_h1_max_x_max_u: 4.80349397659
valid_parallel_conv_convlayer_h1_max_x_mean_u: 0.9604164958
valid_parallel_conv_convlayer_h1_max_x_min_u: 0.00776149798185
valid_parallel_conv_convlayer_h1_mean_x_max_u: 1.85271954536
valid_parallel_conv_convlayer_h1_mean_x_mean_u: 0.280201911926
valid_parallel_conv_convlayer_h1_mean_x_min_u: 0.000459861650597
valid_parallel_conv_convlayer_h1_min_x_max_u: 0.839811980724
valid_parallel_conv_convlayer_h1_min_x_mean_u: 0.0121927829459
valid_parallel_conv_convlayer_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h1_range_x_max_u: 4.80349397659
valid_parallel_conv_convlayer_h1_range_x_mean_u: 0.948223590851
valid_parallel_conv_convlayer_h1_range_x_min_u: 0.00776149798185
valid_parallel_conv_convlayer_h2_kernel_norms_max: 0.801391005516
valid_parallel_conv_convlayer_h2_kernel_norms_mean: 0.571960091591
valid_parallel_conv_convlayer_h2_kernel_norms_min: 0.491183549166
valid_parallel_conv_convlayer_h2_max_x_max_u: 6.01309251785
valid_parallel_conv_convlayer_h2_max_x_mean_u: 1.02575170994
valid_parallel_conv_convlayer_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_mean_x_max_u: 3.56847786903
valid_parallel_conv_convlayer_h2_mean_x_mean_u: 0.18159326911
valid_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_min_x_max_u: 0.926489055157
valid_parallel_conv_convlayer_h2_min_x_mean_u: 0.00212383270264
valid_parallel_conv_convlayer_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_range_x_max_u: 6.01309251785
valid_parallel_conv_convlayer_h2_range_x_mean_u: 1.02362787724
valid_parallel_conv_convlayer_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_kernel_norms_max: 0.830121994019
valid_parallel_conv_convlayer_h3_kernel_norms_mean: 0.514352560043
valid_parallel_conv_convlayer_h3_kernel_norms_min: 0.416572034359
valid_parallel_conv_convlayer_h3_max_x_max_u: 4.48199462891
valid_parallel_conv_convlayer_h3_max_x_mean_u: 0.829745650291
valid_parallel_conv_convlayer_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_mean_x_max_u: 1.53937411308
valid_parallel_conv_convlayer_h3_mean_x_mean_u: 0.127330884337
valid_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_min_x_max_u: 0.134668543935
valid_parallel_conv_convlayer_h3_min_x_mean_u: 0.00031427416252
valid_parallel_conv_convlayer_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_range_x_max_u: 4.48199462891
valid_parallel_conv_convlayer_h3_range_x_mean_u: 0.829431355
valid_parallel_conv_convlayer_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_kernel_norms_max: 0.83466988802
valid_parallel_conv_convlayer_h4_kernel_norms_mean: 0.621888041496
valid_parallel_conv_convlayer_h4_kernel_norms_min: 0.475703805685
valid_parallel_conv_convlayer_h4_max_x_max_u: 3.66979694366
valid_parallel_conv_convlayer_h4_max_x_mean_u: 0.968840479851
valid_parallel_conv_convlayer_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_mean_x_max_u: 1.55808162689
valid_parallel_conv_convlayer_h4_mean_x_mean_u: 0.220568433404
valid_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_min_x_max_u: 0.066610366106
valid_parallel_conv_convlayer_h4_min_x_mean_u: 0.00149815541226
valid_parallel_conv_convlayer_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_range_x_max_u: 3.66480445862
valid_parallel_conv_convlayer_h4_range_x_mean_u: 0.967342317104
valid_parallel_conv_convlayer_h4_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_col_norms_max: 0.611958146095
valid_parallel_conv_passthrough_h1p5_col_norms_mean: 0.49805316329
valid_parallel_conv_passthrough_h1p5_col_norms_min: 0.406229913235
valid_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_row_norms_max: 0.876888334751
valid_parallel_conv_passthrough_h1p5_row_norms_mean: 0.79794549942
valid_parallel_conv_passthrough_h1p5_row_norms_min: 0.711056530476
valid_term_0: 3.06444501877
valid_term_1_weight_decay: 0.0579267069697
valid_y_col_norms_max: 1.70989441872
valid_y_col_norms_mean: 1.60584485531
valid_y_col_norms_min: 1.53073906898
valid_y_max_max_class: 0.467918425798
valid_y_mean_max_class: 0.178204163909
valid_y_min_max_class: 0.0280128661543
valid_y_misclass: 0.751019001007
valid_y_nll: 3.06017303467
valid_y_row_norms_max: 0.674780130386
valid_y_row_norms_mean: 0.550921320915
valid_y_row_norms_min: 0.443664461374
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl done. Time elapsed: 0.404992 seconds
monitoring channel is valid_y_nll
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl done. Time elapsed: 0.405110 seconds
Time this epoch: 0:01:44.619220
Monitoring step:
Epochs seen: 4
Batches seen: 756
Examples seen: 96768
learning_rate: 0.0980501323938
momentum: 0.506784319878
total_seconds_last_epoch: 232.849822998
train_h5_col_norms_max: 1.08570504189
train_h5_col_norms_mean: 0.973344922066
train_h5_col_norms_min: 0.856803178787
train_h5_max_x_max_u: 2.12440729141
train_h5_max_x_mean_u: 0.438762813807
train_h5_max_x_min_u: 0.0
train_h5_mean_x_max_u: 1.18665456772
train_h5_mean_x_mean_u: 0.129949748516
train_h5_mean_x_min_u: 0.0
train_h5_min_x_max_u: 0.347199887037
train_h5_min_x_mean_u: 0.00662795314565
train_h5_min_x_min_u: 0.0
train_h5_range_x_max_u: 2.02479863167
train_h5_range_x_mean_u: 0.432134747505
train_h5_range_x_min_u: 0.0
train_h5_row_norms_max: 1.68539810181
train_h5_row_norms_mean: 1.59008705616
train_h5_row_norms_min: 1.47311389446
train_objective: 2.87498950958
train_parallel_conv_convlayer_h1_kernel_norms_max: 0.87911093235
train_parallel_conv_convlayer_h1_kernel_norms_mean: 0.33376711607
train_parallel_conv_convlayer_h1_kernel_norms_min: 0.16584636271
train_parallel_conv_convlayer_h1_max_x_max_u: 4.81935501099
train_parallel_conv_convlayer_h1_max_x_mean_u: 0.922170341015
train_parallel_conv_convlayer_h1_max_x_min_u: 0.00493617961183
train_parallel_conv_convlayer_h1_mean_x_max_u: 1.98887467384
train_parallel_conv_convlayer_h1_mean_x_mean_u: 0.301489681005
train_parallel_conv_convlayer_h1_mean_x_min_u: 0.00041335116839
train_parallel_conv_convlayer_h1_min_x_max_u: 1.12308132648
train_parallel_conv_convlayer_h1_min_x_mean_u: 0.0207684654742
train_parallel_conv_convlayer_h1_min_x_min_u: 0.0
train_parallel_conv_convlayer_h1_range_x_max_u: 4.8127040863
train_parallel_conv_convlayer_h1_range_x_mean_u: 0.901401817799
train_parallel_conv_convlayer_h1_range_x_min_u: 0.00493617961183
train_parallel_conv_convlayer_h2_kernel_norms_max: 0.885901510715
train_parallel_conv_convlayer_h2_kernel_norms_mean: 0.60272705555
train_parallel_conv_convlayer_h2_kernel_norms_min: 0.491069018841
train_parallel_conv_convlayer_h2_max_x_max_u: 5.90655088425
train_parallel_conv_convlayer_h2_max_x_mean_u: 1.04866480827
train_parallel_conv_convlayer_h2_max_x_min_u: 0.0
train_parallel_conv_convlayer_h2_mean_x_max_u: 3.54130744934
train_parallel_conv_convlayer_h2_mean_x_mean_u: 0.188345655799
train_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h2_min_x_max_u: 1.22595179081
train_parallel_conv_convlayer_h2_min_x_mean_u: 0.00327053060755
train_parallel_conv_convlayer_h2_min_x_min_u: 0.0
train_parallel_conv_convlayer_h2_range_x_max_u: 5.89958047867
train_parallel_conv_convlayer_h2_range_x_mean_u: 1.04539418221
train_parallel_conv_convlayer_h2_range_x_min_u: 0.0
train_parallel_conv_convlayer_h3_kernel_norms_max: 0.931132137775
train_parallel_conv_convlayer_h3_kernel_norms_mean: 0.551408708096
train_parallel_conv_convlayer_h3_kernel_norms_min: 0.416675746441
train_parallel_conv_convlayer_h3_max_x_max_u: 4.41067552567
train_parallel_conv_convlayer_h3_max_x_mean_u: 0.764944851398
train_parallel_conv_convlayer_h3_max_x_min_u: 0.0
train_parallel_conv_convlayer_h3_mean_x_max_u: 1.74889433384
train_parallel_conv_convlayer_h3_mean_x_mean_u: 0.106456868351
train_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h3_min_x_max_u: 0.180211529136
train_parallel_conv_convlayer_h3_min_x_mean_u: 0.000337063887855
train_parallel_conv_convlayer_h3_min_x_min_u: 0.0
train_parallel_conv_convlayer_h3_range_x_max_u: 4.40713691711
train_parallel_conv_convlayer_h3_range_x_mean_u: 0.764607906342
train_parallel_conv_convlayer_h3_range_x_min_u: 0.0
train_parallel_conv_convlayer_h4_kernel_norms_max: 0.926388084888
train_parallel_conv_convlayer_h4_kernel_norms_mean: 0.668245255947
train_parallel_conv_convlayer_h4_kernel_norms_min: 0.479229182005
train_parallel_conv_convlayer_h4_max_x_max_u: 3.46167135239
train_parallel_conv_convlayer_h4_max_x_mean_u: 0.90078407526
train_parallel_conv_convlayer_h4_max_x_min_u: 0.0
train_parallel_conv_convlayer_h4_mean_x_max_u: 1.69581627846
train_parallel_conv_convlayer_h4_mean_x_mean_u: 0.22385814786
train_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
train_parallel_conv_convlayer_h4_min_x_max_u: 0.194612368941
train_parallel_conv_convlayer_h4_min_x_mean_u: 0.00410062493756
train_parallel_conv_convlayer_h4_min_x_min_u: 0.0
train_parallel_conv_convlayer_h4_range_x_max_u: 3.39686226845
train_parallel_conv_convlayer_h4_range_x_mean_u: 0.896683454514
train_parallel_conv_convlayer_h4_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_col_norms_max: 0.611362040043
train_parallel_conv_passthrough_h1p5_col_norms_mean: 0.497565150261
train_parallel_conv_passthrough_h1p5_col_norms_min: 0.405831545591
train_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
train_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
train_parallel_conv_passthrough_h1p5_row_norms_max: 0.876032412052
train_parallel_conv_passthrough_h1p5_row_norms_mean: 0.797164916992
train_parallel_conv_passthrough_h1p5_row_norms_min: 0.71036195755
train_term_0: 2.81119084358
train_term_1_weight_decay: 0.0588158629835
train_y_col_norms_max: 1.71276783943
train_y_col_norms_mean: 1.60816478729
train_y_col_norms_min: 1.52395164967
train_y_max_max_class: 0.476834595203
train_y_mean_max_class: 0.199283912778
train_y_min_max_class: 0.0386513583362
train_y_misclass: 0.725818216801
train_y_nll: 2.87867546082
train_y_row_norms_max: 0.679701864719
train_y_row_norms_mean: 0.551727890968
train_y_row_norms_min: 0.44322258234
training_seconds_this_epoch: 104.619308472
valid_h5_col_norms_max: 1.08570790291
valid_h5_col_norms_mean: 0.9733466506
valid_h5_col_norms_min: 0.856803119183
valid_h5_max_x_max_u: 2.21238946915
valid_h5_max_x_mean_u: 0.512300014496
valid_h5_max_x_min_u: 0.0
valid_h5_mean_x_max_u: 1.07458376884
valid_h5_mean_x_mean_u: 0.130150511861
valid_h5_mean_x_min_u: 0.0
valid_h5_min_x_max_u: 0.216587662697
valid_h5_min_x_mean_u: 0.00250007235445
valid_h5_min_x_min_u: 0.0
valid_h5_range_x_max_u: 2.15139007568
valid_h5_range_x_mean_u: 0.50980001688
valid_h5_range_x_min_u: 0.0
valid_h5_row_norms_max: 1.68539810181
valid_h5_row_norms_mean: 1.59008443356
valid_h5_row_norms_min: 1.47311270237
valid_objective: 2.86400866508
valid_parallel_conv_convlayer_h1_kernel_norms_max: 0.879111886024
valid_parallel_conv_convlayer_h1_kernel_norms_mean: 0.333766400814
valid_parallel_conv_convlayer_h1_kernel_norms_min: 0.165846124291
valid_parallel_conv_convlayer_h1_max_x_max_u: 4.94203567505
valid_parallel_conv_convlayer_h1_max_x_mean_u: 0.972066164017
valid_parallel_conv_convlayer_h1_max_x_min_u: 0.00704380916432
valid_parallel_conv_convlayer_h1_mean_x_max_u: 1.90105378628
valid_parallel_conv_convlayer_h1_mean_x_mean_u: 0.3014549613
valid_parallel_conv_convlayer_h1_mean_x_min_u: 0.000636515847873
valid_parallel_conv_convlayer_h1_min_x_max_u: 0.896123349667
valid_parallel_conv_convlayer_h1_min_x_mean_u: 0.0137809738517
valid_parallel_conv_convlayer_h1_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h1_range_x_max_u: 4.94052600861
valid_parallel_conv_convlayer_h1_range_x_mean_u: 0.958285093307
valid_parallel_conv_convlayer_h1_range_x_min_u: 0.00704380916432
valid_parallel_conv_convlayer_h2_kernel_norms_max: 0.885901868343
valid_parallel_conv_convlayer_h2_kernel_norms_mean: 0.602727591991
valid_parallel_conv_convlayer_h2_kernel_norms_min: 0.491068273783
valid_parallel_conv_convlayer_h2_max_x_max_u: 6.12580156326
valid_parallel_conv_convlayer_h2_max_x_mean_u: 1.13522553444
valid_parallel_conv_convlayer_h2_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_mean_x_max_u: 3.47896265984
valid_parallel_conv_convlayer_h2_mean_x_mean_u: 0.18762601912
valid_parallel_conv_convlayer_h2_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_min_x_max_u: 0.968961238861
valid_parallel_conv_convlayer_h2_min_x_mean_u: 0.00169447972439
valid_parallel_conv_convlayer_h2_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h2_range_x_max_u: 6.12580156326
valid_parallel_conv_convlayer_h2_range_x_mean_u: 1.13353097439
valid_parallel_conv_convlayer_h2_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_kernel_norms_max: 0.931133508682
valid_parallel_conv_convlayer_h3_kernel_norms_mean: 0.551408886909
valid_parallel_conv_convlayer_h3_kernel_norms_min: 0.416676133871
valid_parallel_conv_convlayer_h3_max_x_max_u: 4.62362670898
valid_parallel_conv_convlayer_h3_max_x_mean_u: 0.846282243729
valid_parallel_conv_convlayer_h3_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_mean_x_max_u: 1.62259304523
valid_parallel_conv_convlayer_h3_mean_x_mean_u: 0.106432706118
valid_parallel_conv_convlayer_h3_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_min_x_max_u: 0.0824776217341
valid_parallel_conv_convlayer_h3_min_x_mean_u: 7.80532427598e-05
valid_parallel_conv_convlayer_h3_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h3_range_x_max_u: 4.62362670898
valid_parallel_conv_convlayer_h3_range_x_mean_u: 0.846204221249
valid_parallel_conv_convlayer_h3_range_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_kernel_norms_max: 0.92638617754
valid_parallel_conv_convlayer_h4_kernel_norms_mean: 0.668245911598
valid_parallel_conv_convlayer_h4_kernel_norms_min: 0.479228556156
valid_parallel_conv_convlayer_h4_max_x_max_u: 3.65560150146
valid_parallel_conv_convlayer_h4_max_x_mean_u: 1.07124590874
valid_parallel_conv_convlayer_h4_max_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_mean_x_max_u: 1.44132936001
valid_parallel_conv_convlayer_h4_mean_x_mean_u: 0.223661348224
valid_parallel_conv_convlayer_h4_mean_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_min_x_max_u: 0.0373526625335
valid_parallel_conv_convlayer_h4_min_x_mean_u: 0.000539954169653
valid_parallel_conv_convlayer_h4_min_x_min_u: 0.0
valid_parallel_conv_convlayer_h4_range_x_max_u: 3.65128302574
valid_parallel_conv_convlayer_h4_range_x_mean_u: 1.07070612907
valid_parallel_conv_convlayer_h4_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_col_norms_max: 0.611361324787
valid_parallel_conv_passthrough_h1p5_col_norms_mean: 0.497565984726
valid_parallel_conv_passthrough_h1p5_col_norms_min: 0.405831128359
valid_parallel_conv_passthrough_h1p5_max_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_max_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_mean_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_min_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_max_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_mean_u: 0.0
valid_parallel_conv_passthrough_h1p5_range_x_min_u: 0.0
valid_parallel_conv_passthrough_h1p5_row_norms_max: 0.876031339169
valid_parallel_conv_passthrough_h1p5_row_norms_mean: 0.797164916992
valid_parallel_conv_passthrough_h1p5_row_norms_min: 0.710360407829
valid_term_0: 2.79175043106
valid_term_1_weight_decay: 0.0588157661259
valid_y_col_norms_max: 1.71276640892
valid_y_col_norms_mean: 1.60816681385
valid_y_col_norms_min: 1.52395510674
valid_y_max_max_class: 0.523913323879
valid_y_mean_max_class: 0.200201302767
valid_y_min_max_class: 0.0296451337636
valid_y_misclass: 0.715692937374
valid_y_nll: 2.86897516251
valid_y_row_norms_max: 0.679701983929
valid_y_row_norms_mean: 0.551726996899
valid_y_row_norms_min: 0.443223267794
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv.pkl done. Time elapsed: 0.414054 seconds
monitoring channel is valid_y_nll
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl...
Saving to /disk/scratch/neuroglycerin/models/parallel_interactive_opencv_recent.pkl done. Time elapsed: 0.412167 seconds
Time this epoch: 0:01:43.524435
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-152-c7cf1da1badc> in <module>()
----> 1 train.main_loop()
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/train.pyc in main_loop(self, time_budget)
213 "continues.")
214 self.model.monitor.report_epoch()
--> 215 extension_continue = self.run_callbacks_and_monitoring()
216 if self.save_freq > 0 and \
217 self.model.monitor.get_epochs_seen() % self.save_freq == 0:
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/train.pyc in run_callbacks_and_monitoring(self)
240 extension wants to stop learning.
241 """
--> 242 self.model.monitor()
243 continue_learning = True
244 for extension in self.extensions:
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/pylearn2/pylearn2/monitor.pyc in __call__(self)
252 else:
253 actual_ne = 0
--> 254 for X in myiterator:
255 # X is a flat (not nested) tuple
256 self.run_prereqs(X, d)
<ipython-input-138-b73e9ba16a0a> in next(self)
17 def next(self):
18 # get a batch from both iterators:
---> 19 Xbatch1,ybatch1 = self.iterator_1.next()
20 vectorbatch = self.cached[self.index*self.batch_size:(self.index+1)*self.batch_size,:]
21 self.index += 1
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/neukrill-net-tools/neukrill_net/image_directory_dataset.pyc in next(self)
72 # iterate over indices, applying the dataset's processing function
73 for i,j in enumerate(batch_indices):
---> 74 Xbatch[i] = self.dataset.fn(self.dataset.X[j]).reshape(Xbatch.shape[1:])
75 # get the batch for y as well
76 ybatch = self.dataset.y[batch_indices,:].astype(np.float32)
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/neukrill-net-tools/neukrill_net/augment.pyc in __call__(self, image)
367
368 # Augment and preprocess
--> 369 return self.augment_and_process(image, aug_dic, self.settings)
370
371
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/neukrill-net-tools/neukrill_net/augment.pyc in augment_and_process(self, image, aug_dic, processing_settings)
430 resize_order = 0.75
431 if 'resize' in processing_settings:
--> 432 image = image_processing.resize_image(image, processing_settings['resize'], resize_order)
433
434 #####################################################
/afs/inf.ed.ac.uk/user/s08/s0805516/repos/neukrill-net-tools/neukrill_net/image_processing.pyc in resize_image(image, size, order)
273 if order>0 and order<1:
274 image = (order * skimage.transform.resize(image, size, cval=whiteVal, order=1) +
--> 275 (1-order) * skimage.transform.resize(image, size, cval=whiteVal, order=0) )
276 else:
277 image = skimage.transform.resize(image, size, cval=whiteVal, order=order)
KeyboardInterrupt:
In [153]:
import pickle
In [154]:
with open('/disk/scratch/s1145806/cached_hlf_train_data.pkl','rb') as f:
cached = pickle.load(f)
In [155]:
cached.shape
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-155-4a1d120926d4> in <module>()
----> 1 cached.shape
AttributeError: 'NDArrayWrapper' object has no attribute 'shape'
In [157]:
cached = np.load('/disk/scratch/s1145806/cached_hlf_train_data.pkl')
In [158]:
cached.shape
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-158-4a1d120926d4> in <module>()
----> 1 cached.shape
AttributeError: 'NDArrayWrapper' object has no attribute 'shape'
In [156]:
cached
Out[156]:
<sklearn.externals.joblib.numpy_pickle.NDArrayWrapper at 0x7f70d503a550>
In [161]:
import sklearn.externals.joblib
In [163]:
cached=sklearn.externals.joblib.load('/disk/scratch/s1145806/cached_hlf_train_data.pkl')
In [164]:
cached.shape
Out[164]:
(1, 30336, 170)
In [165]:
cached.squeeze().shape
Out[165]:
(30336, 170)
Content source: Neuroglycerin/neukrill-net-work
Similar notebooks: