In [1]:
import pylearn2.utils
import pylearn2.config
import theano
import neukrill_net.dense_dataset
import neukrill_net.utils
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import holoviews as hl
%load_ext holoviews.ipython
import sklearn.metrics
In [2]:
def make_curves(model, *args):
curves = None
for c in args:
channel = m.monitor.channels[c]
c = c[0].upper() + c[1:]
if not curves:
curves = hl.Curve(zip(channel.epoch_record, channel.val_record),group=c)
else:
curves += hl.Curve(zip(channel.epoch_record, channel.val_record),group=c)
return curves
We analyse a selection of models using shapefix with different numbers of convolutional layers.
In [15]:
!source ../start_script.sh 1
In [4]:
ms=[]
In [16]:
ms += pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/experiment_shapefix_1_recent.pkl")
In [ ]:
make_curves(ms[0],"valid_objective","valid_y_nll","train_y_nll")