In [1]:
import pylearn2.utils
import pylearn2.config
import theano
import neukrill_net.dense_dataset
import neukrill_net.utils
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import holoviews as hl
%load_ext holoviews.ipython
import sklearn.metrics
In [11]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/parallel_conv_recent.pkl")
In [12]:
m2 = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/parallel_conv_fixed_recent.pkl")
In [9]:
def make_curves(model, *args):
curves = None
for c in args:
channel = model.monitor.channels[c]
c = c[0].upper() + c[1:]
if not curves:
curves = hl.Curve(zip(channel.epoch_record, channel.val_record),group=c)
else:
curves += hl.Curve(zip(channel.epoch_record, channel.val_record),group=c)
return curves
In [13]:
make_curves(m,"valid_objective","valid_y_nll","train_y_nll") + make_curves(m2,"valid_objective","valid_y_nll","train_y_nll")
Out[13]:
In [14]:
m.monitor.get_examples_seen()
Out[14]:
In [15]:
m2.monitor.get_examples_seen()
Out[15]: