In [1]:
import pylearn2.utils
import pylearn2.config
import theano
import neukrill_net.dense_dataset
import neukrill_net.utils
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import holoviews as hl
%load_ext holoviews.ipython
import sklearn.metrics
In [20]:
def make_curves(model, *args):
curves = None
for c in args:
channel = model.monitor.channels[c]
c = c[0].upper() + c[1:]
if not curves:
curves = hl.Curve(zip(np.array(channel.time_record)/60,channel.val_record),group=c)
else:
curves += hl.Curve(zip(np.array(channel.time_record)/60,channel.val_record),group=c)
return curves
In [8]:
channel = m.monitor.channels['valid_y_nll']
In [4]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/online_manyaug_faster.pkl")
In [21]:
nll_channels = [c for c in m.monitor.channels.keys() if 'nll' in c]
In [22]:
make_curves(m,*nll_channels)
Out[22]:
In [24]:
m2 = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/online_manyaug_faster_8aug_recent.pkl")
In [25]:
make_curves(m2,*nll_channels)
Out[25]:
In [26]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/online_manyaug_faster_frscale_recent.pkl")
In [27]:
make_curves(m,*nll_channels)
Out[27]:
In [28]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/online_manyaug_faster_frshear_recent.pkl")
In [29]:
make_curves(m,*nll_channels)
Out[29]:
In [30]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/online_manyaug_faster_frtranslate_recent.pkl")
In [31]:
make_curves(m,*nll_channels)
Out[31]:
In [34]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/online_manyaug_3conv1mlp_recent.pkl")
In [35]:
make_curves(m,*nll_channels)
Out[35]:
In [36]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/online_manyaug_3conv2mlp_recent.pkl")
In [37]:
make_curves(m,*nll_channels)
Out[37]:
In [38]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/online_manyaug_4conv1mlp_recent.pkl")
In [39]:
make_curves(m,*nll_channels)
Out[39]:
In [ ]: