In [1]:
!pip freeze
In [2]:
%pylab
In [3]:
%matplotlib inline
In [4]:
cd ..
In [5]:
cd ../neukrill-net-work
In [6]:
import sys
import numpy as np
import skimage.io
In [7]:
import imp
In [8]:
import neukrill_net.utils as utils
import neukrill_net.image_processing as image_processing
import neukrill_net.augment as augment
In [9]:
from IPython.display import display
from IPython.display import Image
from IPython.display import HTML
In [10]:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
In [11]:
img = skimage.io.imread('data/train/acantharia_protist/100224.jpg')
In [14]:
type(img)
Out[14]:
In [15]:
img.shape
Out[15]:
In [16]:
imgplot = plt.imshow(img)
imgplot.set_cmap('gray')
In [17]:
imgplot = plt.imshow(image_processing.flip_image(img, flip_x=True))
imgplot.set_cmap('gray')
In [18]:
imgplot = plt.imshow(image_processing.rotate_image(img, 360))
imgplot.set_cmap('gray')
In [19]:
imgplot = plt.imshow(image_processing.flip_image(image_processing.rotate_image(img, 180), flip_x=True))
imgplot.set_cmap('gray')
In [20]:
imgplot = plt.imshow(img)
imgplot.set_cmap('gray')
In [21]:
imgplot = plt.imshow(img[10:,:])
imgplot.set_cmap('gray')
In [24]:
imp.reload(image_processing)
processingFunction = augment.augmentation_wrapper({'rotate':3,'rotate_is_resizable':True})
imList = processingFunction(img)
for augImg in imList:
iplot = plt.imshow(augImg)
iplot.set_cmap('gray')
show()
In [25]:
for augImg in imList:
print(augImg)
In [26]:
for augImg in imList:
foo = augImg
print(foo.dtype)
print(skimage.dtype_limits(foo))
print(foo.dtype == np.dtype(np.float64))
In [27]:
imp.reload(image_processing)
processingFunction = augment.augmentation_wrapper({'rotate':8,'rotate_is_resizable':True,'flip':True,'crop':True,'resize':(50,50)})
imList = processingFunction(img)
print(len(imList))
for augImg in imList:
print(augImg.dtype)
iplot = plt.imshow(augImg)
iplot.set_cmap('gray')
show()
In [33]:
imp.reload(image_processing)
imp.reload(augment)
processingFunction = augment.augmentation_wrapper({'rotate':3,'rotate_is_resizable':True,'flip':False,'traslations':[0,10],'shape':(50,50)})
imList = processingFunction(img)
print(len(imList))
for augImg in imList:
print(augImg.dtype)
iplot = plt.imshow(augImg)
iplot.set_cmap('gray')
show()
In [14]:
reload(image_processing)
Out[14]:
In [28]:
augImg = image_processing.shear_image(img, 10)
iplot = plt.imshow(augImg)
iplot.set_cmap('gray')
show()
In [29]:
iplot = plt.imshow(skimage.transform.swirl(img,cval=1.0))
iplot.set_cmap('gray')
show()