In [1]:
cd ..
In [2]:
import pylearn2.utils
import pylearn2.config
import theano
import neukrill_net.dense_dataset
import neukrill_net.utils
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import holoviews as hl
%load_ext holoviews.ipython
import sklearn.metrics
In [3]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/quicker_learning_1_fc_layer_experiment_no_norms_repeat_recent.pkl")
In [4]:
channel = m.monitor.channels["train_h1_kernel_norms_max"]
plt.plot(channel.val_record)
channel = m.monitor.channels["train_h1_kernel_norms_min"]
plt.plot(channel.val_record)
channel = m.monitor.channels["train_h1_kernel_norms_mean"]
plt.plot(channel.val_record)
Out[4]:
In [5]:
2 * 0.8
Out[5]:
In [6]:
channel = m.monitor.channels["train_h2_kernel_norms_max"]
plt.plot(channel.val_record)
channel = m.monitor.channels["train_h2_kernel_norms_min"]
plt.plot(channel.val_record)
channel = m.monitor.channels["train_h2_kernel_norms_mean"]
plt.plot(channel.val_record)
Out[6]:
In [7]:
channel = m.monitor.channels["train_h3_kernel_norms_max"]
plt.plot(channel.val_record)
channel = m.monitor.channels["train_h3_kernel_norms_min"]
plt.plot(channel.val_record)
channel = m.monitor.channels["train_h3_kernel_norms_mean"]
plt.plot(channel.val_record)
Out[7]:
In [8]:
2.25 * 0.8
Out[8]:
In [9]:
channel = m.monitor.channels["train_h4_col_norms_max"]
plt.plot(channel.epoch_record, channel.val_record)
channel = m.monitor.channels["train_h4_col_norms_min"]
plt.plot(channel.epoch_record, channel.val_record)
channel = m.monitor.channels["train_h4_col_norms_mean"]
plt.plot(channel.epoch_record, channel.val_record)
Out[9]:
In [10]:
2.5 * 0.8
Out[10]:
In [69]:
m_h_aug = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/experiment_setting_colnorms_higher_aug_recent.pkl")
In [70]:
import neukrill_net.plotting as pl
pl.monitor_channels(m_h_aug, ["valid_y_y_1_nll"], x_axis = "epoch") * pl.monitor_channels(m_h_aug, ["train_y_y_1_nll"], x_axis = "epoch")
Out[70]:
In [71]:
pl.monitor_channels(m_h_aug, [c for c in m.monitor.channels if "norms_mean" in c], x_axis = "epoch")
Out[71]:
In [57]:
m_h_lr = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/experiment_highcolnorms_aug_lr_recent.pkl")
In [65]:
pl.monitor_channels(m_h_lr, ["valid_y_y_1_nll"], x_axis = "epoch") * pl.monitor_channels(m_h_lr, ["train_y_y_1_nll"], x_axis = "epoch")
Out[65]:
In [68]:
pl.monitor_channels(m_h_lr, [c for c in m.monitor.channels if "norms_mean" in c], x_axis = "epoch")
Out[68]: