In [2]:
import pylearn2.utils
import pylearn2.config
import theano
import neukrill_net.dense_dataset
import neukrill_net.utils
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import holoviews as hl
%load_ext holoviews.ipython
import sklearn.metrics
In [3]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/resume_40aug.pkl")
In [4]:
import neukrill_net.plotting as pl
pl.monitor_channels(m, ["valid_y_nll"], x_axis = "epoch")
Out[4]:
In [13]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/resume_40aug_recent.pkl")
In [14]:
import neukrill_net.plotting as pl
pl.monitor_channels(m, ["valid_y_nll"], x_axis = "epoch") + pl.monitor_channels(m, ["train_y_nll"], x_axis = "epoch")
Out[14]:
In [15]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/resume_16aug.pkl")
In [16]:
import neukrill_net.plotting as pl
pl.monitor_channels(m, ["valid_y_nll"], x_axis = "epoch")
Out[16]:
In [17]:
m = pylearn2.utils.serial.load(
"/disk/scratch/neuroglycerin/models/resume_16aug_recent.pkl")
In [18]:
import neukrill_net.plotting as pl
pl.monitor_channels(m, ["valid_y_nll"], x_axis = "epoch") + pl.monitor_channels(m, ["train_y_nll"], x_axis = "epoch")
Out[18]:
In [19]:
def make_curves(model, *args):
curves = None
for c in args:
channel = m.monitor.channels[c]
c = c[0].upper() + c[1:]
if not curves:
curves = hl.Curve(zip(channel.example_record,channel.val_record),group=c)
else:
curves += hl.Curve(zip(channel.example_record,channel.val_record),group=c)
return curves
In [20]:
means = [c for c in sorted(m.monitor.channels.keys()) if "mean" in c and "norm" in c]
make_curves(m,*means)
Out[20]: