In [1]:
%matplotlib inline
import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
sns.set_context('poster', font_scale=1.5)
mpl.rcParams['svg.fonttype'] = 'none'
mpl.rcParams['pdf.fonttype'] = 42
In [2]:
def plotHist(inputFile):
x = pd.read_csv('qcstatscsv/%s.csv' % inputFile)
x = pd.concat((x['acq-AP_run-01'], x['acq-PA_run-01'], x['acq-AP_run-02'], x['acq-PA_run-02']))
x = np.array(x)
x = x[np.isnan(x) == False]
return x
In [3]:
f = plt.figure(figsize=(30,10))
f.add_subplot(1,3,1)
x = plotHist('max_FD')
plt.hist(x, 100)
plt.xlabel('mm')
plt.ylabel('number of runs')
plt.title('maximum framewise displacement', fontsize=30)
f.add_subplot(1,3,2)
x = plotHist('mean_FD')
plt.hist(x, 100)
plt.xlabel('mm')
plt.title('mean framewise displacement', fontsize=30)
f.add_subplot(1,3,3)
x = plotHist('median_tsnr')
plt.hist(x, 100)
plt.xlabel('tSNR')
plt.title('temporal signal-to-noise (tSNR)', fontsize=30)
f.savefig('qcplots.pdf')
plt.show()
In [ ]: