In [37]:
%matplotlib inline
In [38]:
from dipy.reconst.dti import fractional_anisotropy, color_fa
from argparse import ArgumentParser
from scipy import ndimage
import os
import re
import numpy as np
import nibabel as nb
import sys
import matplotlib
#matplotlib.use('Agg') # very important above pyplot import
import matplotlib.pyplot as plt
In [39]:
cd
In [40]:
ls
In [41]:
cd bigtiff
In [46]:
cd tiffs
In [47]:
ls
In [48]:
from dipy.reconst.dti import from_lower_triangular
In [49]:
ls
In [50]:
img = nb.load('dogsigma_0gausigma_0tensorfsl.nii')
In [51]:
data = img.get_data()
In [52]:
output = from_lower_triangular(data)
In [53]:
output_ds = output[25:100, 250:300, :, :, :]
In [54]:
print output.shape
print output_ds.shape
In [55]:
FA = fractional_anisotropy(output)
In [56]:
FA = np.clip(FA, 0, 1)
In [57]:
FA[np.isnan(FA)] = 0
In [58]:
print FA.shape
In [59]:
from dipy.reconst.dti import decompose_tensor
In [62]:
evalues, evectors = decompose_tensor(output)
In [63]:
print evectors[..., 0, 0].shape
print evectors.shape[-2:]
In [64]:
print FA[:, :, :, 0].shape
In [65]:
RGB = color_fa(FA[:, :, :, 0], evectors)
In [66]:
nb.save(nb.Nifti1Image(np.array(255 * RGB, 'uint8'), img.get_affine()), 'tensor_rgb_upper.nii.gz')
In [67]:
def plot_rgb(im):
plt.rcParams.update({'axes.labelsize': 'x-large',
'axes.titlesize': 'x-large'})
if im.shape == (182, 218, 182):
x = [78, 90, 100]
y = [82, 107, 142]
z = [88, 103, 107]
else:
shap = im.shape
x = [int(shap[0]*0.35), int(shap[0]*0.51), int(shap[0]*0.65)]
y = [int(shap[1]*0.35), int(shap[1]*0.51), int(shap[1]*0.65)]
z = [int(shap[2]*0.35), int(shap[2]*0.51), int(shap[2]*0.65)]
coords = (x, y, z)
labs = ['Sagittal Slice (YZ fixed)',
'Coronal Slice (XZ fixed)',
'Axial Slice (XY fixed)']
var = ['X', 'Y', 'Z']
idx = 0
for i, coord in enumerate(coords):
for pos in coord:
idx += 1
ax = plt.subplot(3, 3, idx)
ax.set_title(var[i] + " = " + str(pos))
if i == 0:
image = ndimage.rotate(im[pos, :, :], 90)
elif i == 1:
image = ndimage.rotate(im[:, pos, :], 90)
else:
image = im[:, :, pos]
if idx % 3 == 1:
ax.set_ylabel(labs[i])
ax.yaxis.set_ticks([0, image.shape[0]/2, image.shape[0] - 1])
ax.xaxis.set_ticks([0, image.shape[1]/2, image.shape[1] - 1])
plt.imshow(image)
fig = plt.gcf()
fig.set_size_inches(12.5, 10.5, forward=True)
return fig
In [68]:
affine = img.get_affine()
fa = nb.Nifti1Image(np.array(255 * RGB, 'uint8'), affine)
im = fa.get_data()
In [69]:
print np.asarray(fa)
In [70]:
fig = plot_rgb(im)
In [71]:
import os
In [72]:
ls
In [73]:
from PIL import Image
im = plt.imread('sample3.tiff')
plt.imshow(im)
Out[73]:
In [ ]: