In [37]:
%matplotlib inline

In [38]:
from dipy.reconst.dti import fractional_anisotropy, color_fa
from argparse import ArgumentParser
from scipy import ndimage
import os
import re
import numpy as np
import nibabel as nb
import sys
import matplotlib

#matplotlib.use('Agg')  # very important above pyplot import
import matplotlib.pyplot as plt

In [39]:
cd


/root

In [40]:
ls


Aut1367.nii               final.ipynb
Final Downsampled.ipynb   index.html
Final Downsampled2.ipynb  miniTIFF/
Final Notebook.ipynb      pipeline.ipynb
TIFF_stack/               prototype.ipynb
Untitled-Copy1.ipynb      result/
Untitled.ipynb            sample0.tiff
bigtiff/                  sample1.tiff
downsampled/              sample2.tiff
downsampled.nii           sample3.tiff
downsampled0.tiff         seelviz/
downsampled1.tiff         tensor_rgb_upper.nii.gz
downsampled2.tiff         tmp/
downsampled3.tiff         v100_ch0_tensorfsl_dogsig1_gausig2.3.nii

In [41]:
cd bigtiff


/root/bigtiff

In [46]:
cd tiffs


/root/bigtiff/tiffs

In [47]:
ls


dogsigma_0gausigma_0tensorfsl.nii  sample0.tiff  sample3.tiff
gradient_amplitudes.nii            sample1.tiff  tensor_rgb_upper.nii.gz
gradient_vectors.nii               sample2.tiff

In [48]:
from dipy.reconst.dti import from_lower_triangular

In [49]:
ls


dogsigma_0gausigma_0tensorfsl.nii  sample0.tiff  sample3.tiff
gradient_amplitudes.nii            sample1.tiff  tensor_rgb_upper.nii.gz
gradient_vectors.nii               sample2.tiff

In [50]:
img = nb.load('dogsigma_0gausigma_0tensorfsl.nii')

In [51]:
data = img.get_data()

In [52]:
output = from_lower_triangular(data)

In [53]:
output_ds = output[25:100, 250:300, :, :, :]

In [54]:
print output.shape
print output_ds.shape


(595, 912, 4, 3, 3)
(0, 50, 4, 3, 3)

In [55]:
FA = fractional_anisotropy(output)

In [56]:
FA = np.clip(FA, 0, 1)

In [57]:
FA[np.isnan(FA)] = 0

In [58]:
print FA.shape


(595, 912, 4, 3)

In [59]:
from dipy.reconst.dti import decompose_tensor

In [62]:
evalues, evectors = decompose_tensor(output)

In [63]:
print evectors[..., 0, 0].shape
print evectors.shape[-2:]


(595, 912, 4)
(3, 3)

In [64]:
print FA[:, :, :, 0].shape


(595, 912, 4)

In [65]:
RGB = color_fa(FA[:, :, :, 0], evectors)

In [66]:
nb.save(nb.Nifti1Image(np.array(255 * RGB, 'uint8'), img.get_affine()), 'tensor_rgb_upper.nii.gz')


/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:1: DeprecationWarning: get_affine method is deprecated.
Please use the ``img.affine`` property instead.

* deprecated from version: 2.1
* Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0
  if __name__ == '__main__':

In [67]:
def plot_rgb(im):
    plt.rcParams.update({'axes.labelsize': 'x-large',
                         'axes.titlesize': 'x-large'})

    if im.shape == (182, 218, 182):
        x = [78, 90, 100]
        y = [82, 107, 142]
        z = [88, 103, 107]
    else:
        shap = im.shape
        x = [int(shap[0]*0.35), int(shap[0]*0.51), int(shap[0]*0.65)]
        y = [int(shap[1]*0.35), int(shap[1]*0.51), int(shap[1]*0.65)]
        z = [int(shap[2]*0.35), int(shap[2]*0.51), int(shap[2]*0.65)]
    coords = (x, y, z)

    labs = ['Sagittal Slice (YZ fixed)',
            'Coronal Slice (XZ fixed)',
            'Axial Slice (XY fixed)']
    var = ['X', 'Y', 'Z']

    idx = 0
    for i, coord in enumerate(coords):
        for pos in coord:
            idx += 1
            ax = plt.subplot(3, 3, idx)
            ax.set_title(var[i] + " = " + str(pos))
            if i == 0:
                image = ndimage.rotate(im[pos, :, :], 90)
            elif i == 1:
                image = ndimage.rotate(im[:, pos, :], 90)
            else:
                image = im[:, :, pos]

            if idx % 3 == 1:
                ax.set_ylabel(labs[i])
                ax.yaxis.set_ticks([0, image.shape[0]/2, image.shape[0] - 1])
                ax.xaxis.set_ticks([0, image.shape[1]/2, image.shape[1] - 1])

            plt.imshow(image)

    fig = plt.gcf()
    fig.set_size_inches(12.5, 10.5, forward=True)
    return fig

In [68]:
affine = img.get_affine()

fa = nb.Nifti1Image(np.array(255 * RGB, 'uint8'), affine)
im = fa.get_data()


/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:1: DeprecationWarning: get_affine method is deprecated.
Please use the ``img.affine`` property instead.

* deprecated from version: 2.1
* Will raise <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 4.0
  if __name__ == '__main__':

In [69]:
print np.asarray(fa)


<class 'nibabel.nifti1.Nifti1Image'>
data shape (595, 912, 4, 3)
affine: 
[[ 1.  0.  0.  0.]
 [ 0.  1.  0.  0.]
 [ 0.  0.  1.  0.]
 [ 0.  0.  0.  1.]]
metadata:
<class 'nibabel.nifti1.Nifti1Header'> object, endian='<'
sizeof_hdr      : 348
data_type       : 
db_name         : 
extents         : 0
session_error   : 0
regular         : 
dim_info        : 0
dim             : [  4 595 912   4   3   1   1   1]
intent_p1       : 0.0
intent_p2       : 0.0
intent_p3       : 0.0
intent_code     : none
datatype        : uint8
bitpix          : 8
slice_start     : 0
pixdim          : [ 1.  1.  1.  1.  1.  1.  1.  1.]
vox_offset      : 0.0
scl_slope       : nan
scl_inter       : nan
slice_end       : 0
slice_code      : unknown
xyzt_units      : 0
cal_max         : 0.0
cal_min         : 0.0
slice_duration  : 0.0
toffset         : 0.0
glmax           : 0
glmin           : 0
descrip         : 
aux_file        : 
qform_code      : unknown
sform_code      : aligned
quatern_b       : 0.0
quatern_c       : 0.0
quatern_d       : 0.0
qoffset_x       : 0.0
qoffset_y       : 0.0
qoffset_z       : 0.0
srow_x          : [ 1.  0.  0.  0.]
srow_y          : [ 0.  1.  0.  0.]
srow_z          : [ 0.  0.  1.  0.]
intent_name     : 
magic           : n+1

In [70]:
fig = plot_rgb(im)



In [71]:
import os

In [72]:
ls


dogsigma_0gausigma_0tensorfsl.nii  sample0.tiff  sample3.tiff
gradient_amplitudes.nii            sample1.tiff  tensor_rgb_upper.nii.gz
gradient_vectors.nii               sample2.tiff

In [73]:
from PIL import Image
im = plt.imread('sample3.tiff') 
plt.imshow(im)


Out[73]:
<matplotlib.image.AxesImage at 0x7f07917cff90>

In [ ]: