In [2]:
import chap01ex

In [3]:
df = chap01ex.ReadFemResp()
df


Out[3]:
caseid rscrinf rdormres rostscrn rscreenhisp rscreenrace age_a age_r cmbirth agescrn ... pubassis_i basewgt adj_mod_basewgt finalwgt secu_r sest cmintvw cmlstyr screentime intvlngth
0 2298 1 5 5 1 5 27 27 902 27 ... 0 3247.916977 5123.759559 5556.717241 2 18 1234 1222 18:26:36 110.492667
1 5012 1 5 1 5 5 42 42 718 42 ... 0 2335.279149 2846.799490 4744.191350 2 18 1233 1221 16:30:59 64.294000
2 11586 1 5 1 5 5 43 43 708 43 ... 0 2335.279149 2846.799490 4744.191350 2 18 1234 1222 18:19:09 75.149167
3 6794 5 5 4 1 5 15 15 1042 15 ... 0 3783.152221 5071.464231 5923.977368 2 18 1234 1222 15:54:43 28.642833
4 616 1 5 4 1 5 20 20 991 20 ... 0 5341.329968 6437.335772 7229.128072 2 18 1233 1221 14:19:44 69.502667
5 845 1 5 4 1 5 42 42 727 42 ... 0 2335.279149 3725.796795 4705.681352 2 18 1234 1222 17:10:13 95.488000
6 10333 5 5 3 1 5 17 17 1029 17 ... 0 2335.279149 2687.399758 3139.151658 2 18 1236 1224 14:14:38 61.204333
7 855 5 5 4 5 5 22 22 965 22 ... 0 4670.558298 7122.614751 10019.382170 2 18 1235 1223 14:42:52 59.756333
8 8656 5 5 4 1 5 38 38 780 38 ... 0 5198.652195 6027.568848 6520.021223 2 18 1237 1225 15:32:34 56.978833
9 3566 5 5 4 5 5 21 21 974 21 ... 0 2764.142038 3240.986558 4559.095792 2 18 1231 1219 16:22:25 104.744667
10 5917 1 5 3 1 5 44 43 714 43 ... 0 2418.624283 2762.143030 3488.586646 2 18 1233 1221 15:38:06 96.850167
11 9200 5 5 3 1 5 26 26 923 26 ... 0 2418.624283 2754.293339 2987.031126 2 18 1237 1225 14:12:31 61.060667
12 6320 5 5 5 5 1 23 23 952 23 ... 0 5497.225851 6448.332868 7241.477811 1 18 1236 1224 14:27:20 69.906500
13 11700 1 5 4 1 5 34 34 822 34 ... 0 3362.448309 3677.062170 4666.559600 1 18 1236 1224 11:35:31 77.493333
14 7354 1 5 4 1 5 28 28 896 28 ... 0 2417.628123 2790.899197 3026.730179 1 18 1235 1223 14:40:18 79.018500
15 3697 5 5 4 5 5 28 28 896 28 ... 0 9670.512492 18559.585881 31215.367494 1 18 1236 1224 11:59:26 45.963500
16 4881 1 5 5 1 5 23 23 948 23 ... 0 3292.089359 3935.302679 4419.344908 1 18 1234 1222 20:37:54 110.416833
17 5862 1 5 4 1 5 33 33 831 33 ... 0 3056.771190 3456.489520 4386.630850 1 18 1234 1222 16:42:13 107.819667
18 8542 5 5 5 5 5 16 16 1036 16 ... 0 5900.163872 6697.056170 7822.831313 1 18 1237 1225 13:04:36 72.481500
19 2054 1 5 4 5 1 24 24 939 24 ... 0 2417.628123 2570.384230 2886.541491 1 18 1236 1224 13:58:43 87.417500
20 3719 5 5 2 5 5 22 22 972 22 ... 1 4168.324350 4879.253694 5479.401898 1 18 1238 1226 12:50:26 53.782000
21 11740 1 5 5 1 5 32 32 843 32 ... 0 2417.628123 2790.899197 3541.930171 1 18 1234 1222 14:23:08 92.950500
22 11343 1 5 5 1 5 41 41 741 41 ... 0 2417.628123 4394.216361 5549.895265 1 18 1237 1225 20:29:06 70.791667
23 7075 1 5 4 1 5 37 37 782 37 ... 0 4308.038516 5562.306199 6016.746616 2 18 1232 1220 16:30:34 80.659000
24 5422 1 5 2 1 5 38 38 773 38 ... 0 3363.768618 3948.605534 4271.206606 1 18 1234 1222 17:07:52 45.171500
25 2178 5 5 3 1 5 29 29 877 29 ... 0 3363.768618 5306.521605 5754.922681 1 18 1234 1222 18:28:12 77.489833
26 8358 5 5 4 5 5 21 21 977 21 ... 0 2418.624283 2688.131135 3018.771264 2 18 1237 1225 16:10:17 28.934833
27 5083 1 5 4 1 5 37 37 789 37 ... 0 2418.624283 3119.659072 3374.535218 2 18 1236 1224 15:14:10 58.307000
28 1545 5 5 4 1 5 39 39 762 39 ... 0 8034.280664 8972.807739 9705.886131 2 18 1237 1225 14:09:31 53.124833
29 5656 5 5 3 5 5 26 26 921 26 ... 0 4170.041867 6582.846660 7139.097203 2 18 1238 1226 11:20:54 61.501000
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
7613 4640 5 5 6 5 5 18 18 1016 18 ... 0 2273.045919 5800.771072 10202.976239 1 76 1234 1222 12:01:09 84.903833
7614 3998 5 5 2 5 5 24 24 935 24 ... 0 3544.869231 4031.967457 5671.768622 1 76 1228 1216 17:11:53 106.922500
7615 2432 5 5 5 5 5 15 15 1048 15 ... 0 7576.875171 8452.387480 14866.904339 2 76 1234 1222 16:41:31 40.803333
7616 5438 1 5 3 5 5 30 30 862 30 ... 0 2273.062551 2559.633775 4440.964600 2 76 1229 1217 12:50:02 86.785000
7617 9643 1 5 2 5 5 24 24 929 24 ... 0 2597.785773 2969.368501 4177.010670 2 76 1229 1217 12:26:15 89.036000
7618 3030 1 5 1 5 5 34 34 811 34 ... 0 2273.062551 2525.629369 4381.966956 2 76 1229 1217 14:23:39 80.175667
7619 11585 1 5 4 5 5 34 34 814 34 ... 0 1720.605492 2260.899193 3922.660100 1 76 1228 1216 15:59:28 113.677500
7620 6677 1 5 4 1 5 26 26 909 26 ... 0 3613.271533 4035.558807 4376.563526 1 76 1227 1215 16:35:57 110.918333
7621 10744 5 5 8 5 1 22 22 968 22 ... 0 3082.751506 3278.300013 4611.584628 1 76 1234 1222 14:08:25 95.713167
7622 8403 5 5 4 5 5 19 19 995 19 ... 0 2408.847688 2563.254954 4508.509139 1 76 1228 1216 17:36:32 62.217000
7623 7574 5 5 4 5 5 19 19 997 19 ... 0 2272.098197 2482.173894 4365.895661 2 76 1228 1216 16:09:34 96.809833
7624 8000 1 5 5 5 5 37 37 780 37 ... 0 4544.196393 4924.699453 8987.084031 2 76 1227 1215 16:40:18 140.088333
7625 6288 5 1 3 5 2 20 20 986 20 ... 0 2272.098197 2585.825443 3637.480651 2 76 1227 1215 17:40:15 93.622333
7626 5856 5 5 6 5 3 23 23 958 23 ... 0 12456.163382 31787.898176 44716.036364 1 76 1238 1226 16:04:09 69.623500
7627 8794 1 5 3 5 5 23 23 945 23 ... 0 6818.699775 7950.887074 11184.512847 1 76 1228 1216 18:23:51 77.508000
7628 6365 5 5 3 5 2 17 17 1028 17 ... 0 2272.899925 3456.977988 6080.478584 1 76 1235 1223 17:15:36 46.016667
7629 3537 1 5 3 5 2 36 36 797 36 ... 0 3918.792974 5258.971089 9597.096340 1 76 1239 1227 15:19:09 85.378000
7630 1515 1 5 1 5 5 44 44 688 44 ... 0 2272.899925 2680.745920 4467.463075 1 76 1228 1216 16:23:34 147.769667
7631 9174 1 5 3 5 3 32 32 834 32 ... 0 2272.899925 2608.931475 4526.496109 1 76 1228 1216 17:30:08 171.005000
7632 4213 1 5 3 5 2 40 40 748 40 ... 0 2272.948899 2659.474205 4432.013762 2 76 1229 1217 09:47:43 99.248667
7633 6804 5 5 3 5 2 35 35 805 35 ... 0 3247.069856 3814.222882 6960.575338 2 76 1229 1217 14:20:39 103.929167
7634 1282 1 5 4 5 3 35 35 798 35 ... 0 2068.394620 2222.154405 4055.209574 1 76 1228 1216 16:31:47 105.509000
7635 2954 1 5 4 5 3 30 30 862 30 ... 0 2068.394620 2356.019463 4087.693768 1 76 1228 1216 19:40:51 85.290167
7636 4964 1 5 3 5 3 41 41 727 41 ... 0 2068.394620 2222.154405 3703.220316 1 76 1227 1215 12:38:19 306.238000
7637 143 1 5 1 5 2 35 35 808 35 ... 0 2273.211779 2463.724427 4496.050707 2 76 1230 1218 17:45:36 83.798833
7638 11018 1 5 2 5 3 34 34 811 34 ... 0 3247.445399 3784.333145 6565.818007 2 76 1228 1216 15:57:38 82.907333
7639 6075 5 5 3 5 3 17 17 1014 17 ... 0 2273.211779 2497.234491 4392.385746 2 76 1228 1216 18:23:53 54.044833
7640 5649 1 5 2 5 5 29 29 873 29 ... 0 3247.445399 3569.313710 6003.228729 2 76 1228 1216 18:42:41 68.168000
7641 501 5 5 3 5 2 16 16 1034 16 ... 0 5304.160818 5954.644352 10473.623950 2 76 1228 1216 16:02:45 32.717333
7642 10252 1 5 2 5 2 28 28 889 28 ... 0 3247.445399 3476.637428 5847.356491 2 76 1230 1218 12:45:19 74.061500

7643 rows × 3087 columns


In [4]:
df.pregnum.value_counts().sort_index()


Out[4]:
0     2610
1     1267
2     1432
3     1110
4      611
5      305
6      150
7       80
8       40
9       21
10       9
11       3
12       2
14       2
19       1
Name: pregnum, dtype: int64

In [ ]: