In [2]:
import chap01ex
In [3]:
df = chap01ex.ReadFemResp()
df
Out[3]:
caseid
rscrinf
rdormres
rostscrn
rscreenhisp
rscreenrace
age_a
age_r
cmbirth
agescrn
...
pubassis_i
basewgt
adj_mod_basewgt
finalwgt
secu_r
sest
cmintvw
cmlstyr
screentime
intvlngth
0
2298
1
5
5
1
5
27
27
902
27
...
0
3247.916977
5123.759559
5556.717241
2
18
1234
1222
18:26:36
110.492667
1
5012
1
5
1
5
5
42
42
718
42
...
0
2335.279149
2846.799490
4744.191350
2
18
1233
1221
16:30:59
64.294000
2
11586
1
5
1
5
5
43
43
708
43
...
0
2335.279149
2846.799490
4744.191350
2
18
1234
1222
18:19:09
75.149167
3
6794
5
5
4
1
5
15
15
1042
15
...
0
3783.152221
5071.464231
5923.977368
2
18
1234
1222
15:54:43
28.642833
4
616
1
5
4
1
5
20
20
991
20
...
0
5341.329968
6437.335772
7229.128072
2
18
1233
1221
14:19:44
69.502667
5
845
1
5
4
1
5
42
42
727
42
...
0
2335.279149
3725.796795
4705.681352
2
18
1234
1222
17:10:13
95.488000
6
10333
5
5
3
1
5
17
17
1029
17
...
0
2335.279149
2687.399758
3139.151658
2
18
1236
1224
14:14:38
61.204333
7
855
5
5
4
5
5
22
22
965
22
...
0
4670.558298
7122.614751
10019.382170
2
18
1235
1223
14:42:52
59.756333
8
8656
5
5
4
1
5
38
38
780
38
...
0
5198.652195
6027.568848
6520.021223
2
18
1237
1225
15:32:34
56.978833
9
3566
5
5
4
5
5
21
21
974
21
...
0
2764.142038
3240.986558
4559.095792
2
18
1231
1219
16:22:25
104.744667
10
5917
1
5
3
1
5
44
43
714
43
...
0
2418.624283
2762.143030
3488.586646
2
18
1233
1221
15:38:06
96.850167
11
9200
5
5
3
1
5
26
26
923
26
...
0
2418.624283
2754.293339
2987.031126
2
18
1237
1225
14:12:31
61.060667
12
6320
5
5
5
5
1
23
23
952
23
...
0
5497.225851
6448.332868
7241.477811
1
18
1236
1224
14:27:20
69.906500
13
11700
1
5
4
1
5
34
34
822
34
...
0
3362.448309
3677.062170
4666.559600
1
18
1236
1224
11:35:31
77.493333
14
7354
1
5
4
1
5
28
28
896
28
...
0
2417.628123
2790.899197
3026.730179
1
18
1235
1223
14:40:18
79.018500
15
3697
5
5
4
5
5
28
28
896
28
...
0
9670.512492
18559.585881
31215.367494
1
18
1236
1224
11:59:26
45.963500
16
4881
1
5
5
1
5
23
23
948
23
...
0
3292.089359
3935.302679
4419.344908
1
18
1234
1222
20:37:54
110.416833
17
5862
1
5
4
1
5
33
33
831
33
...
0
3056.771190
3456.489520
4386.630850
1
18
1234
1222
16:42:13
107.819667
18
8542
5
5
5
5
5
16
16
1036
16
...
0
5900.163872
6697.056170
7822.831313
1
18
1237
1225
13:04:36
72.481500
19
2054
1
5
4
5
1
24
24
939
24
...
0
2417.628123
2570.384230
2886.541491
1
18
1236
1224
13:58:43
87.417500
20
3719
5
5
2
5
5
22
22
972
22
...
1
4168.324350
4879.253694
5479.401898
1
18
1238
1226
12:50:26
53.782000
21
11740
1
5
5
1
5
32
32
843
32
...
0
2417.628123
2790.899197
3541.930171
1
18
1234
1222
14:23:08
92.950500
22
11343
1
5
5
1
5
41
41
741
41
...
0
2417.628123
4394.216361
5549.895265
1
18
1237
1225
20:29:06
70.791667
23
7075
1
5
4
1
5
37
37
782
37
...
0
4308.038516
5562.306199
6016.746616
2
18
1232
1220
16:30:34
80.659000
24
5422
1
5
2
1
5
38
38
773
38
...
0
3363.768618
3948.605534
4271.206606
1
18
1234
1222
17:07:52
45.171500
25
2178
5
5
3
1
5
29
29
877
29
...
0
3363.768618
5306.521605
5754.922681
1
18
1234
1222
18:28:12
77.489833
26
8358
5
5
4
5
5
21
21
977
21
...
0
2418.624283
2688.131135
3018.771264
2
18
1237
1225
16:10:17
28.934833
27
5083
1
5
4
1
5
37
37
789
37
...
0
2418.624283
3119.659072
3374.535218
2
18
1236
1224
15:14:10
58.307000
28
1545
5
5
4
1
5
39
39
762
39
...
0
8034.280664
8972.807739
9705.886131
2
18
1237
1225
14:09:31
53.124833
29
5656
5
5
3
5
5
26
26
921
26
...
0
4170.041867
6582.846660
7139.097203
2
18
1238
1226
11:20:54
61.501000
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
7613
4640
5
5
6
5
5
18
18
1016
18
...
0
2273.045919
5800.771072
10202.976239
1
76
1234
1222
12:01:09
84.903833
7614
3998
5
5
2
5
5
24
24
935
24
...
0
3544.869231
4031.967457
5671.768622
1
76
1228
1216
17:11:53
106.922500
7615
2432
5
5
5
5
5
15
15
1048
15
...
0
7576.875171
8452.387480
14866.904339
2
76
1234
1222
16:41:31
40.803333
7616
5438
1
5
3
5
5
30
30
862
30
...
0
2273.062551
2559.633775
4440.964600
2
76
1229
1217
12:50:02
86.785000
7617
9643
1
5
2
5
5
24
24
929
24
...
0
2597.785773
2969.368501
4177.010670
2
76
1229
1217
12:26:15
89.036000
7618
3030
1
5
1
5
5
34
34
811
34
...
0
2273.062551
2525.629369
4381.966956
2
76
1229
1217
14:23:39
80.175667
7619
11585
1
5
4
5
5
34
34
814
34
...
0
1720.605492
2260.899193
3922.660100
1
76
1228
1216
15:59:28
113.677500
7620
6677
1
5
4
1
5
26
26
909
26
...
0
3613.271533
4035.558807
4376.563526
1
76
1227
1215
16:35:57
110.918333
7621
10744
5
5
8
5
1
22
22
968
22
...
0
3082.751506
3278.300013
4611.584628
1
76
1234
1222
14:08:25
95.713167
7622
8403
5
5
4
5
5
19
19
995
19
...
0
2408.847688
2563.254954
4508.509139
1
76
1228
1216
17:36:32
62.217000
7623
7574
5
5
4
5
5
19
19
997
19
...
0
2272.098197
2482.173894
4365.895661
2
76
1228
1216
16:09:34
96.809833
7624
8000
1
5
5
5
5
37
37
780
37
...
0
4544.196393
4924.699453
8987.084031
2
76
1227
1215
16:40:18
140.088333
7625
6288
5
1
3
5
2
20
20
986
20
...
0
2272.098197
2585.825443
3637.480651
2
76
1227
1215
17:40:15
93.622333
7626
5856
5
5
6
5
3
23
23
958
23
...
0
12456.163382
31787.898176
44716.036364
1
76
1238
1226
16:04:09
69.623500
7627
8794
1
5
3
5
5
23
23
945
23
...
0
6818.699775
7950.887074
11184.512847
1
76
1228
1216
18:23:51
77.508000
7628
6365
5
5
3
5
2
17
17
1028
17
...
0
2272.899925
3456.977988
6080.478584
1
76
1235
1223
17:15:36
46.016667
7629
3537
1
5
3
5
2
36
36
797
36
...
0
3918.792974
5258.971089
9597.096340
1
76
1239
1227
15:19:09
85.378000
7630
1515
1
5
1
5
5
44
44
688
44
...
0
2272.899925
2680.745920
4467.463075
1
76
1228
1216
16:23:34
147.769667
7631
9174
1
5
3
5
3
32
32
834
32
...
0
2272.899925
2608.931475
4526.496109
1
76
1228
1216
17:30:08
171.005000
7632
4213
1
5
3
5
2
40
40
748
40
...
0
2272.948899
2659.474205
4432.013762
2
76
1229
1217
09:47:43
99.248667
7633
6804
5
5
3
5
2
35
35
805
35
...
0
3247.069856
3814.222882
6960.575338
2
76
1229
1217
14:20:39
103.929167
7634
1282
1
5
4
5
3
35
35
798
35
...
0
2068.394620
2222.154405
4055.209574
1
76
1228
1216
16:31:47
105.509000
7635
2954
1
5
4
5
3
30
30
862
30
...
0
2068.394620
2356.019463
4087.693768
1
76
1228
1216
19:40:51
85.290167
7636
4964
1
5
3
5
3
41
41
727
41
...
0
2068.394620
2222.154405
3703.220316
1
76
1227
1215
12:38:19
306.238000
7637
143
1
5
1
5
2
35
35
808
35
...
0
2273.211779
2463.724427
4496.050707
2
76
1230
1218
17:45:36
83.798833
7638
11018
1
5
2
5
3
34
34
811
34
...
0
3247.445399
3784.333145
6565.818007
2
76
1228
1216
15:57:38
82.907333
7639
6075
5
5
3
5
3
17
17
1014
17
...
0
2273.211779
2497.234491
4392.385746
2
76
1228
1216
18:23:53
54.044833
7640
5649
1
5
2
5
5
29
29
873
29
...
0
3247.445399
3569.313710
6003.228729
2
76
1228
1216
18:42:41
68.168000
7641
501
5
5
3
5
2
16
16
1034
16
...
0
5304.160818
5954.644352
10473.623950
2
76
1228
1216
16:02:45
32.717333
7642
10252
1
5
2
5
2
28
28
889
28
...
0
3247.445399
3476.637428
5847.356491
2
76
1230
1218
12:45:19
74.061500
7643 rows × 3087 columns
In [4]:
df.pregnum.value_counts().sort_index()
Out[4]:
0 2610
1 1267
2 1432
3 1110
4 611
5 305
6 150
7 80
8 40
9 21
10 9
11 3
12 2
14 2
19 1
Name: pregnum, dtype: int64
In [ ]:
Content source: Nathx/think_stats
Similar notebooks: