Quick demonstration of GNU Octave

In a Jupyter Notebook

Some basic plotting


In [1]:
% Some variables
N = 100
disp(['Number of values N =', num2str(N)])
h = 1 / N
disp(['Step h = ', num2str(h)])


N =  100
Number of values N =100
h =  0.010000
Step h = 0.01

In [2]:
% Some arrays
t = 0 : h : 2*pi;
x = cos(t);
y = sin(t);
length(t)
length(x)
length(y)


ans =  629
ans =  629
ans =  629

In [3]:
fig = figure();
plot(t, x, 'r*-')
grid on
hold on
plot(t, y, 'b+-')
legend(['\cos(t)', '\sin(t)'])
title('Cosinus and sinus on [0, 2 \pi]')
% whitebg(fig);



In [4]:
fig = figure();
grid on
plot(x, y)
title('\sin(t) as function of \cos(t)')
% whitebg(fig);


Some basic linear algebra


In [5]:
a = [[1 0 1]; [0 1 1]; [1 1 0]]


a =

   1   0   1
   0   1   1
   1   1   0


In [6]:
a'


ans =

   1   0   1
   0   1   1
   1   1   0


In [7]:
b = 1 + a^5


b =

   12   11   12
   11   12   12
   12   12   11

eig gives the eigen values:


In [8]:
l_a = eig(a)
l_b = eig(b)


l_a =

  -1.00000
   1.00000
   2.00000

l_b =

   -1.00000
    1.00000
   35.00000


In [9]:
[Ua, Sa, Va] = svd(a)
[Ub, Sb, Vb] = svd(b)


Ua =

  -5.7735e-01   4.0825e-01  -7.0711e-01
  -5.7735e-01  -8.1650e-01  -7.8505e-17
  -5.7735e-01   4.0825e-01   7.0711e-01

Sa =

Diagonal Matrix

   2.00000         0         0
         0   1.00000         0
         0         0   1.00000

Va =

  -0.57735   0.81650  -0.00000
  -0.57735  -0.40825   0.70711
  -0.57735  -0.40825  -0.70711

Ub =

  -5.7735e-01   4.0825e-01  -7.0711e-01
  -5.7735e-01  -8.1650e-01  -1.6098e-15
  -5.7735e-01   4.0825e-01   7.0711e-01

Sb =

Diagonal Matrix

   35.00000          0          0
          0    1.00000          0
          0          0    1.00000

Vb =

  -0.57735   0.81650  -0.00000
  -0.57735  -0.40825   0.70711
  -0.57735  -0.40825  -0.70711


3D plotting

Some basic 3D plotting:


In [10]:
x = linspace(-2, 2, 50);
y = linspace(-2, 2, 50);
[xx,yy] = meshgrid(x, y);
mesh(xx, yy, 4 - (xx.^2 + yy.^2))



In [11]:
x = linspace(-2, 2, 50);
y = linspace(-2, 2, 50);
[xx,yy] = meshgrid(x, y);
meshc(xx, yy, 4 - (xx.^2 + yy.^2))



In [13]:
# From https://octave.sourceforge.io/octave/function/plot3.html
z = [0:0.05:5];
plot3(cos (2*pi*z), sin (2*pi*z), z, ";helix;");
plot3(z, exp (2i*pi*z), ";complex sinusoid;");



In [14]:
clf;
z = [0:0.05:5];
plot3 (cos (2*pi*z), sin (2*pi*z), z);
legend ("helix");
title ("plot3() of a helix");



In [15]:
clf;
colormap ("default");
[X, Y] = meshgrid (linspace (-3, 3, 40));
Z = sqrt (abs (X .* Y)) ./ (1 + X.^2 + Y.^2);
meshc (X, Y, Z);
title ("meshc() combines mesh/contour plots");



That's all for today, folks!