What factors correlate with economic development?

December 2016

Author: George Qian

Contact: george.qian@stern.nyu.edu

Introduction

Many factors goes into transforming a nation from a third-world country to a first world country. As the saying goes "correlation does not equal causation", in this project I will only be looking at the correlation between a variable in development such as foreign direct investment and the country's GDP/GNI growth. I'm going to determine which of the factors I've chosen correlates most closely with a country's economic development. I'm going to explore the correlation between those factors and the country's wealth distribution. The correlation could be further explored to determine if there is a causation.

Packages Imported


In [1]:
import pandas as pd                    # data package
import matplotlib.pyplot as plt        # graphics 
import seaborn as sns                  # seaborn graphics package
import numpy as np                     # foundation for pandas
import sys                             # system module 
import datetime as dt                  # date and time module


%matplotlib inline


/Users/sglyon/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:878: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.
  warnings.warn(self.msg_depr % (key, alt_key))

Dataset

Usually data on developing countries are difficult to gather as most of those countries lacks in census and other data collection. Out of all the global agencies, the World Bank has one of the most extensive collection of data for developing countries. The data for this report was collected from World Bank DataBank. I downloaded the datasets I needed and reuploaded to Github so others could also have access to the data used.

Countries Chosen: Burundi, Djibouti, Ethiopia, Kenya, Madagascar, Tanzania, Uganda, Zambia, and Zimbabwe

Factors:

  1. Foreign direct investment, net inflows
  2. Arable land
  3. Central government debt, total
  4. Children out of school
  5. Female genital mutilation prevalence
  6. Fertilizer consumption
  7. Firms expected to give gifts in meetings with tax officials
  8. Health expenditure per capita, PPP
  9. Literacy rate, adult male
  10. Net ODA received per capita

Economic Development Indicators:

  1. GDP
  2. GNI

Wealth Distribution

1.. GINI Coefficient


In [2]:
#Importing the data from github
url = 'https://raw.githubusercontent.com/ghq201/databootcamp/master/Project%20Data.csv' 
wb = pd.read_csv(url)
wb.head(153)


Out[2]:
Series Name Country Name 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
0 Foreign direct investment, net inflows (BoP, c... Burundi -11440.9127 .. .. 44690.7076 584701.6926 31593.77819 500245.0931 3833208.348 348404.5346 780582.0036 3354999.181 604919.6515 6884806.836 47060908.13 7360491.402
1 Foreign direct investment, net inflows (BoP, c... Tanzania 549270351.5 395567134 318401298.7 442539548.4 935520591.7 403038991.4 581511807 1383260000 952630000 1813200000 1229361018 1799646137 2087261310 2044550443 1960581620
2 Foreign direct investment, net inflows (BoP, c... Kenya 5302622.939 27618447.06 81738242.64 46063931.45 21211685.4 50674725.18 729044146 95585680.23 116257609 178064606.8 139862091.1 163410210.3 371846696.4 944327305 1437000004
3 Foreign direct investment, net inflows (BoP, c... Uganda 151496150.7 184648059.2 202192593.6 295416479.8 379808340.7 644262499.9 792305780.9 728860900.7 841570802.7 543872727.3 894293858 1205388488 1096000000 1058564540 1057301392
4 Foreign direct investment, net inflows (BoP, c... Zambia 145000000 298390000 347000000 364040000 356940000 615790000 1323900000 938620000 694800000 1729300000 1108500000 1731500000 2099800000 1507800000 1653000000
5 Foreign direct investment, net inflows (BoP, c... Zimbabwe 3800000 25900000 3800000 8700000 102800000 40000000 68900000 51600000 105000000 165900000 387000000 399500000 400000000 544800000 421000000
6 Foreign direct investment, net inflows (BoP, c... Madagascar 93059224 14661798.07 12874087 52910748 85428623.9 294681941.5 789389724.1 1134497642 1293330142 809707320.3 738462649 810503138.6 566545549.9 350652561.7 517455239.4
7 Foreign direct investment, net inflows (BoP, c... Ethiopia 349400000 255000000 465000000 545100000 265111675.5 545257102.2 222000573 108537544 221459581.4 288271568.3 626509560.4 278562822.2 953000000 2132000000 2167600000
8 Foreign direct investment, net inflows (BoP, c... Djibouti 3392958.626 3432346.206 14224542.96 38543559.85 22203341.19 108287709.4 195351140.3 227654582.2 96859684.56 36501032.52 79000230.7 109998255.7 286004467.7 152998238.8 123998424.5
9 Arable land (% of land area) Burundi 37.96728972 38.39563863 38.55140187 38.35669782 37.22741433 35.04672897 33.09968847 35.04672897 36.99376947 36.99376947 38.94080997 42.83489097 46.72897196 .. ..
10 Arable land (% of land area) Tanzania 9.629713254 9.708737864 9.641002484 10.72476857 10.95055317 10.95055317 11.28923007 12.78584331 12.98261459 13.09550689 13.88575299 15.3533529 15.2404606 .. ..
11 Arable land (% of land area) Kenya 9.010085392 8.945075025 9.041712057 9.238500193 9.249042415 9.329866114 9.312295744 9.312295744 9.663703131 9.663703131 10.19081421 10.3665179 10.19081421 .. ..
12 Arable land (% of land area) Uganda 27.02567439 28.02662529 29.27781392 29.77828937 29.77828937 30.52900255 31.27971573 32.28066663 33.03137981 33.66247756 34.16118093 34.41053262 34.41053262 .. ..
13 Arable land (% of land area) Zambia 3.661604272 3.473277822 3.86607299 3.849930723 3.668330217 4.053054251 3.96696216 4.10551662 4.775420708 4.573642368 4.842680154 5.111717941 4.977199048 .. ..
14 Arable land (% of land area) Zimbabwe 9.305932532 9.435181595 9.435181595 9.822928784 10.08142691 10.59842316 10.33992504 10.98617035 10.59842316 10.33992504 10.85692129 10.33992504 10.33992504 .. ..
15 Arable land (% of land area) Madagascar 5.072737903 5.072737903 5.072737903 5.072737903 5.158716511 5.158716511 5.158716511 5.502630945 6.018502597 6.018502597 6.015864695 6.015864695 6.015812994 .. ..
16 Arable land (% of land area) Ethiopia 9.9084 9.853 10.928 12.364 12.823 13.396 14.038 13.606 13.948 14.565 15.1932 15.346 15.119 .. ..
17 Arable land (% of land area) Djibouti 0.043140638 0.043140638 0.043140638 0.043140638 0.043140638 0.05608283 0.064710958 0.051768766 0.05608283 0.069025022 0.086281277 0.086281277 0.086281277 .. ..
18 Arable land (hectares per person) Burundi 0.140354009 0.137711074 0.133761822 0.128563006 0.120490841 0.109514764 0.099828788 0.102020054 0.103963914 0.100410977 0.102143471 0.108646568 0.114657434 .. ..
19 Arable land (hectares per person) Tanzania 0.244419177 0.23985176 0.231648326 0.250426159 0.248300295 0.240928861 0.24083616 0.264342809 0.260050894 0.254115549 0.261019046 0.279572449 0.268852232 .. ..
20 Arable land (hectares per person) Kenya 0.160937606 0.155726267 0.153378078 0.152682573 0.148914935 0.14633737 0.142279817 0.138582228 0.140056065 0.136380612 0.140029127 0.138683286 0.132744737 .. ..
21 Arable land (hectares per person) Uganda 0.220096722 0.220856819 0.22313119 0.219437825 0.212178602 0.210338119 0.208389196 0.207967731 0.205818264 0.203623491 0.199939627 0.194911841 0.188661772 .. ..
22 Arable land (hectares per person) Zambia 0.250615998 0.231777837 0.251531463 0.244080598 0.226427483 0.243346752 0.231499726 0.232718107 0.262810163 0.244297819 0.250984312 0.256989767 0.242685237 .. ..
23 Arable land (hectares per person) Zimbabwe 0.285623883 0.287595623 0.285733029 0.295310133 0.300360016 0.312310947 0.300801682 0.314920675 0.298812105 0.286247995 0.294621227 0.274621877 0.268490757 .. ..
24 Arable land (hectares per person) Madagascar 0.181697606 0.176266425 0.171061349 0.166072119 0.164020524 0.159352993 0.154870435 0.160587767 0.170767477 0.166037842 0.161447552 0.156994885 0.152674706 .. ..
25 Arable land (hectares per person) Ethiopia 0.144874204 0.139974943 0.150871938 0.165944197 0.167383666 0.170138886 0.173540097 0.163770633 0.163512975 0.166339633 0.169078795 0.166458384 0.159890651 .. ..
26 Arable land (hectares per person) Djibouti 0.001362235 0.001341455 0.001321605 0.001302687 0.001284677 0.001647778 0.001876621 0.001482142 0.001585178 0.00192585 0.002375856 0.002344476 0.002313331 .. ..
27 Central government debt, total (% of GDP) Burundi .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
28 Central government debt, total (% of GDP) Tanzania .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
29 Central government debt, total (% of GDP) Kenya .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
123 Health expenditure per capita, PPP (constant 2... Madagascar 62.33640111 54.88919924 54.2230147 57.81357573 62.38910781 66.68191258 68.91424403 66.00689973 64.89127922 66.26698187 58.09751877 48.34825107 58.64733798 43.70476778 ..
124 Health expenditure per capita, PPP (constant 2... Ethiopia 22.50991904 25.01220334 23.77366821 24.6384633 27.44203037 32.42684174 37.92213038 38.0668298 41.86599854 72.30531157 76.29493633 72.46903911 71.30421924 72.96435215 ..
125 Health expenditure per capita, PPP (constant 2... Djibouti 91.78066618 95.47276846 113.0784224 128.1699746 143.5463951 149.4744299 174.3558449 190.3829315 184.0168278 231.7879 242.4307269 257.6303507 276.730008 337.9588614 ..
126 Literacy rate, adult male (% of males ages 15 ... Burundi .. .. .. .. .. .. .. 88.77617645 .. .. .. .. .. .. 88.19145966
127 Literacy rate, adult male (% of males ages 15 ... Tanzania .. 77.50640106 .. .. .. .. .. .. .. 75.46779633 .. 83.37769318 .. .. 84.76193237
128 Literacy rate, adult male (% of males ages 15 ... Kenya .. .. .. .. .. .. 78.07914734 .. .. .. .. .. .. .. 81.11036682
129 Literacy rate, adult male (% of males ages 15 ... Uganda .. 78.30402374 .. .. .. 81.38858795 .. .. .. 82.63139343 .. 79.12303925 .. .. 80.95406342
130 Literacy rate, adult male (% of males ages 15 ... Zambia .. 80.91285706 .. .. .. .. 71.9474411 .. .. 88.68402863 .. .. .. .. 89.74845123
131 Literacy rate, adult male (% of males ages 15 ... Zimbabwe .. .. .. .. .. .. .. .. .. .. 87.76480865 .. .. .. 88.54821777
132 Literacy rate, adult male (% of males ages 15 ... Madagascar .. .. .. .. .. .. .. .. 67.41731262 .. .. .. .. .. 66.74227142
133 Literacy rate, adult male (% of males ages 15 ... Ethiopia .. .. .. 50 41.9366188 .. 49.13465881 .. .. .. .. .. .. .. 57.27806091
134 Literacy rate, adult male (% of males ages 15 ... Djibouti .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
135 Literacy rate, adult female (% of females ages... Burundi .. .. .. .. .. .. .. 84.59146881 .. .. .. .. .. .. 82.91288757
136 Literacy rate, adult female (% of females ages... Tanzania .. 62.17232132 .. .. .. .. .. .. .. 60.7526207 .. 73.34718323 .. .. 76.08978271
137 Literacy rate, adult female (% of females ages... Kenya .. .. .. .. .. .. 66.86312103 .. .. .. .. .. .. .. 74.969841
138 Literacy rate, adult female (% of females ages... Uganda .. 58.90988159 .. .. .. 62.07897186 .. .. .. 64.59145355 .. 61.97042847 .. .. 66.78479767
139 Literacy rate, adult female (% of females ages... Zambia .. 61.83927917 .. .. .. .. 51.78696823 .. .. 77.74664307 .. .. .. .. 80.56697083
140 Literacy rate, adult female (% of females ages... Zimbabwe .. .. .. .. .. .. .. .. .. .. 80.06565857 .. .. .. 85.28513336
141 Literacy rate, adult female (% of females ages... Madagascar .. .. .. .. .. .. .. .. 61.64141083 .. .. .. .. .. 62.6137886
142 Literacy rate, adult female (% of females ages... Ethiopia .. .. .. 22.79999924 17.97719955 .. 28.9216404 .. .. .. .. .. .. .. 40.96794128
143 Literacy rate, adult female (% of females ages... Djibouti .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
144 Net ODA received per capita (current US$) Burundi 20.0295967 24.02122482 30.77332573 47.51479878 45.8722245 52.43201871 56.25645804 59.19883652 61.43391846 66.52914238 58.26672132 51.48958395 53.12461094 46.38591976 ..
145 Net ODA received per capita (current US$) Tanzania 36.51186957 35.41550692 46.80137062 46.72187676 38.37314671 46.77720764 67.95409008 54.41647638 66.32745025 64.76660527 51.78278343 58.04109053 68.32829693 51.09699102 ..
146 Net ODA received per capita (current US$) Kenya 14.78912403 12.01548514 15.58817229 19.17214568 21.47724521 26.08994126 35.6177387 35.71656242 45.23046964 40.2855929 59.88900905 62.36117274 75.7931252 59.40497441 ..
147 Net ODA received per capita (current US$) Uganda 33.51135626 28.60845139 38.05244994 44.84719051 42.51274667 54.70273793 57.9255279 52.92601408 55.65512967 50.92155919 45.90759777 46.37658888 46.50211915 43.21867648 ..
148 Net ODA received per capita (current US$) Zambia 52.55754455 72.83048494 67.78746659 96.41013045 97.31732006 118.5267482 79.11654241 85.11443638 93.80175926 65.92089249 72.07920842 64.61263763 74.9189005 63.26113488 ..
149 Net ODA received per capita (current US$) Zimbabwe 12.76818099 15.66647607 14.63657655 14.53625274 28.7051757 21.1944873 35.954073 45.37969875 53.65645077 50.99007099 50.6972983 68.62045485 55.33594503 49.70859293 ..
150 Net ODA received per capita (current US$) Madagascar 22.8045894 22.34460755 31.67998191 71.08731132 49.91800614 41.51570405 46.15500331 42.28225729 21.66112258 22.40135123 20.50476162 16.83299153 21.77054065 24.73897421 ..
151 Net ODA received per capita (current US$) Ethiopia 16.12925205 18.81457575 22.45448818 24.53958203 25.16472371 25.82768231 31.62761475 40.0663903 44.76830048 39.42928821 38.87091796 34.93424118 41.0842513 36.97562794 ..
152 Net ODA received per capita (current US$) Djibouti 80.78050588 99.40184504 105.0807765 83.55435593 95.22023212 146.0818997 140.8841887 173.9293685 203.2808314 157.6669291 166.9394941 174.147695 170.9551977 185.5681634 ..

153 rows × 17 columns

Cleaning the dataset

As expected there are a lot of missing data for each countries. Some countries have more data than others and most only have data for a couple years for a certain variable.


In [3]:
#Setting the index to Series and Country
wb=wb.set_index(['Series Name', 'Country Name'])

In [4]:
#Removing missing values
wb=wb.replace(to_replace=['..'], value=[np.nan]).head(152)

In [5]:
#Converting objects to float as for some reason the type still came out as object after .replace
for i in range(2001,2016):
    str_i=str(i)
    wb[str_i]=wb[str_i].apply(pd.to_numeric)
wb.dtypes


Out[5]:
2001    float64
2002    float64
2003    float64
2004    float64
2005    float64
2006    float64
2007    float64
2008    float64
2009    float64
2010    float64
2011    float64
2012    float64
2013    float64
2014    float64
2015    float64
dtype: object

In [6]:
#Transposing the dataset
wb=wb.T.head(152)
wb.head(152)


Out[6]:
Series Name Foreign direct investment, net inflows (BoP, current US$) Arable land (% of land area) ... Literacy rate, adult female (% of females ages 15 and above) Net ODA received per capita (current US$)
Country Name Burundi Tanzania Kenya Uganda Zambia Zimbabwe Madagascar Ethiopia Djibouti Burundi ... Ethiopia Djibouti Burundi Tanzania Kenya Uganda Zambia Zimbabwe Madagascar Ethiopia
2001 -1.144091e+04 5.492704e+08 5.302623e+06 1.514962e+08 1.450000e+08 3800000.0 9.305922e+07 3.494000e+08 3.392959e+06 37.967290 ... NaN NaN 20.029597 36.511870 14.789124 33.511356 52.557545 12.768181 22.804589 16.129252
2002 NaN 3.955671e+08 2.761845e+07 1.846481e+08 2.983900e+08 25900000.0 1.466180e+07 2.550000e+08 3.432346e+06 38.395639 ... NaN NaN 24.021225 35.415507 12.015485 28.608451 72.830485 15.666476 22.344608 18.814576
2003 NaN 3.184013e+08 8.173824e+07 2.021926e+08 3.470000e+08 3800000.0 1.287409e+07 4.650000e+08 1.422454e+07 38.551402 ... NaN NaN 30.773326 46.801371 15.588172 38.052450 67.787467 14.636577 31.679982 22.454488
2004 4.469071e+04 4.425395e+08 4.606393e+07 2.954165e+08 3.640400e+08 8700000.0 5.291075e+07 5.451000e+08 3.854356e+07 38.356698 ... 22.799999 NaN 47.514799 46.721877 19.172146 44.847191 96.410130 14.536253 71.087311 24.539582
2005 5.847017e+05 9.355206e+08 2.121169e+07 3.798083e+08 3.569400e+08 102800000.0 8.542862e+07 2.651117e+08 2.220334e+07 37.227414 ... 17.977200 NaN 45.872225 38.373147 21.477245 42.512747 97.317320 28.705176 49.918006 25.164724
2006 3.159378e+04 4.030390e+08 5.067473e+07 6.442625e+08 6.157900e+08 40000000.0 2.946819e+08 5.452571e+08 1.082877e+08 35.046729 ... NaN NaN 52.432019 46.777208 26.089941 54.702738 118.526748 21.194487 41.515704 25.827682
2007 5.002451e+05 5.815118e+08 7.290441e+08 7.923058e+08 1.323900e+09 68900000.0 7.893897e+08 2.220006e+08 1.953511e+08 33.099688 ... 28.921640 NaN 56.256458 67.954090 35.617739 57.925528 79.116542 35.954073 46.155003 31.627615
2008 3.833208e+06 1.383260e+09 9.558568e+07 7.288609e+08 9.386200e+08 51600000.0 1.134498e+09 1.085375e+08 2.276546e+08 35.046729 ... NaN NaN 59.198837 54.416476 35.716562 52.926014 85.114436 45.379699 42.282257 40.066390
2009 3.484045e+05 9.526300e+08 1.162576e+08 8.415708e+08 6.948000e+08 105000000.0 1.293330e+09 2.214596e+08 9.685968e+07 36.993769 ... NaN NaN 61.433918 66.327450 45.230470 55.655130 93.801759 53.656451 21.661123 44.768300
2010 7.805820e+05 1.813200e+09 1.780646e+08 5.438727e+08 1.729300e+09 165900000.0 8.097073e+08 2.882716e+08 3.650103e+07 36.993769 ... NaN NaN 66.529142 64.766605 40.285593 50.921559 65.920892 50.990071 22.401351 39.429288
2011 3.354999e+06 1.229361e+09 1.398621e+08 8.942939e+08 1.108500e+09 387000000.0 7.384626e+08 6.265096e+08 7.900023e+07 38.940810 ... NaN NaN 58.266721 51.782783 59.889009 45.907598 72.079208 50.697298 20.504762 38.870918
2012 6.049197e+05 1.799646e+09 1.634102e+08 1.205388e+09 1.731500e+09 399500000.0 8.105031e+08 2.785628e+08 1.099983e+08 42.834891 ... NaN NaN 51.489584 58.041091 62.361173 46.376589 64.612638 68.620455 16.832992 34.934241
2013 6.884807e+06 2.087261e+09 3.718467e+08 1.096000e+09 2.099800e+09 400000000.0 5.665455e+08 9.530000e+08 2.860045e+08 46.728972 ... NaN NaN 53.124611 68.328297 75.793125 46.502119 74.918901 55.335945 21.770541 41.084251
2014 4.706091e+07 2.044550e+09 9.443273e+08 1.058565e+09 1.507800e+09 544800000.0 3.506526e+08 2.132000e+09 1.529982e+08 NaN ... NaN NaN 46.385920 51.096991 59.404974 43.218676 63.261135 49.708593 24.738974 36.975628
2015 7.360491e+06 1.960582e+09 1.437000e+09 1.057301e+09 1.653000e+09 421000000.0 5.174552e+08 2.167600e+09 1.239984e+08 NaN ... 40.967941 NaN NaN NaN NaN NaN NaN NaN NaN NaN

15 rows × 152 columns


In [7]:
#separating the datasets 
FDI=wb['Foreign direct investment, net inflows (BoP, current US$)']
Arable=wb['Arable land (% of land area)']
ArablePP=wb['Arable land (hectares per person)']
CGDebt=wb['Central government debt, total (% of GDP)']
CooSchool=wb['Children out of school (% of primary school age)']
FemaleGM=wb['Female genital mutilation prevalence (%)']
FertCons=wb['Fertilizer consumption (kilograms per hectare of arable land)']
Firms=wb['Firms expected to give gifts in meetings with tax officials (% of firms)']
GDP=wb['GDP (constant LCU)']
GDPPC=wb['GDP per capita (constant LCU)']
GINI=wb['GINI index (World Bank estimate)']
GNI=wb['GNI (constant LCU)']
GNIPC=wb['GNI per capita (constant LCU)']
HealthEx=wb['Health expenditure per capita, PPP (constant 2011 international $)']
LiteracyM=wb['Literacy rate, adult male (% of males ages 15 and above)']
LiteracyF=wb['Literacy rate, adult female (% of females ages 15 and above)']
ODA=wb['Net ODA received per capita (current US$)']

Factors = [FDI,Arable,ArablePP,CGDebt,CooSchool,FemaleGM,FertCons,Firms,HealthEx,LiteracyM,LiteracyF,ODA]
Economic_Indicator = [GDP,GDPPC,GINI,GNI,GNIPC]

Country Trends

Here are some important trends that I have decided to look at for each country's development.


In [8]:
fig, ax = plt.subplots(figsize=(12,7))
FDIGraph=FDI.plot(ax=ax,kind='line')
FDIGraph.set(ylabel="net inflows (BoP, current US$)", xlabel="Year")
FDIGraph.set_title('Foreign Direct Investment',fontsize= 30)


Out[8]:
<matplotlib.text.Text at 0x11a105438>

There has been a general upward trend for foreign direct investment, which could prove beneficial to a country's growth.


In [9]:
fig, ax = plt.subplots(figsize=(12,7))
GDPGraph=GDPPC.plot(ax=ax,kind='line')
GDPGraph.set(ylabel="constant LCU", xlabel="Year")
GDPGraph.set_title('GDP Per Capita',fontsize= 30)


Out[9]:
<matplotlib.text.Text at 0x11a9de9b0>

Over the past 15 years, Tanzania and Burundi has experienced a steady pace of growth while other east African countries have not been as successful.


In [10]:
fig, ax = plt.subplots(figsize=(12,7))
ODAGraph=ODA.plot(ax=ax,kind='line')
ODAGraph.set(ylabel="current US$", xlabel="Year")
ODAGraph.set_title('ODA Received Per Capita',fontsize= 30)


Out[10]:
<matplotlib.text.Text at 0x11ad197f0>

ODA received per capita has been fairly constant over the past fifteen years

Correlation Analysis

Here we are looking at the correlation between the various factors and economic development indicators. I will first to do a country-by-country correlation analysis on two factors that are hotly debated on whether they are beneficial to the country, FDI/ODI receieved. Afterwards, I'm going to take a look at an average of the correlations for each factor.


In [11]:
FDI.corrwith(GDPPC)


Out[11]:
Country Name
Burundi       0.607749
Tanzania      0.898924
Kenya         0.742627
Uganda        0.943575
Zambia        0.908454
Zimbabwe     -0.209844
Madagascar    0.475567
Ethiopia      0.718622
Djibouti      0.626656
dtype: float64

In [12]:
ODA.corrwith(GDPPC)


Out[12]:
Country Name
Burundi       0.023684
Djibouti           NaN
Ethiopia      0.787868
Kenya         0.953954
Madagascar    0.217758
Tanzania      0.679012
Uganda        0.520942
Zambia       -0.210540
Zimbabwe     -0.634979
dtype: float64

In [13]:
#Creating a dictionary of variables to correlation mean 
Factorname = ['FDI','Arable Land','Arable Land per person','Central Government Debt','Childern out of School',
              'Female Genital Mutilation','Fertilizer Consumption','Firms Expected to Give Gifts','Health Expenditure',
              'Male Literacy','Female Literacy','ODA']
GDPPC_Correlation = {}
for i in range(0,12): 
    corr=Factors[i].corrwith(GDPPC)
    s=float(corr.mean())
    GDPPC_Correlation[Factorname[i]]=s


GNIPC_Correlation = {}
for i in range(0,12): 
    corr=Factors[i].corrwith(GNI)
    s=float(corr.mean())
    GNIPC_Correlation[Factorname[i]]=s


GINIPC_Correlation = {}
for i in range(0,12): 
    corr=Factors[i].corrwith(GINI)
    s=float(corr.mean())
    GINIPC_Correlation[Factorname[i]]=s

In [14]:
#Converting the dictionaries to dataframe
GINIC=pd.DataFrame.from_dict(GINIPC_Correlation,orient='index')
GNIC=pd.DataFrame.from_dict(GNIPC_Correlation,orient='index')
GDPC=pd.DataFrame.from_dict(GDPPC_Correlation,orient='index')
Correlation=pd.concat([GDPC,GNIC,GINIC],axis=1)
Correlation.columns = ["GDP Correlation", "GNI Correlation", "GINI Correlation"]
print (Correlation)


                              GDP Correlation  GNI Correlation  \
Arable Land                          0.594185         0.490864   
Female Literacy                      0.662855         0.619695   
Firms Expected to Give Gifts        -0.450655        -0.333333   
ODA                                  0.292212         0.259025   
Central Government Debt             -0.803328        -0.772863   
Health Expenditure                   0.720573         0.488152   
Arable Land per person              -0.002488        -0.531274   
Fertilizer Consumption               0.605998         0.397868   
FDI                                  0.634703         0.730611   
Male Literacy                        0.818428         0.231726   
Childern out of School              -0.484041        -0.578972   
Female Genital Mutilation            0.001647         0.000320   

                              GINI Correlation  
Arable Land                       1.297672e-01  
Female Literacy                   0.000000e+00  
Firms Expected to Give Gifts               NaN  
ODA                               2.810013e-01  
Central Government Debt           1.132272e-02  
Health Expenditure                1.874996e-01  
Arable Land per person            5.945071e-01  
Fertilizer Consumption           -9.423381e-02  
FDI                              -2.991290e-01  
Male Literacy                     5.551115e-17  
Childern out of School           -9.849517e-01  
Female Genital Mutilation                  NaN  

Conclusion

As I mentioned before "correlation does not equal causation"; however, after running the analysis we determined some factors that we should look further into and some factors that we know are most likely not related. There is a sufficiently high correlation for factors such as Male Literacy, Fertilizer Consumption, Health Expediture, Childern out of School, and Central Government Debt to warrant further exploration. Some factors such as Female Genital Mutilation and ODA Received have low correlation with economic development, so those factors might be not be as important to the success of a country as the other factors. As for wealth distribtion, it seems uncorrelated with any of the factors I have chosen.

Data Source

World Bank DataBank