In [1]:
from sympy import *; init_session()
from applpy import *
import numpy as np
In [2]:
P = np.array([
[1,0,0,0],
[Rational(3,10),Rational(4,10),Rational(1,10),Rational(2,10)],
[0,0,1,0],
[Rational(2,10),Rational(3,10),Rational(4,10),Rational(1,10)]
])
In [3]:
X = MarkovChain(P, states = ['red','blue','black','green'])
In [4]:
abs_red = X.absorption_prob('red')
vector_display(abs_red,X.state_space)
Out[4]:
In [5]:
abs_steps = X.absorption_steps()
vector_display(abs_steps, X.state_space)
Out[5]:
In [2]:
P2 = np.array([
[Rational(2,10),0,0,Rational(8,10)],
[0,1,0,0],
[Rational(1,10),Rational(4,10),Rational(2,10),Rational(3,10)],
[Rational(7,10),0,0,Rational(3,10)]
])
X = MarkovChain(P2, states = ['red','blue','black','green'])
In [3]:
Pi = X.long_run_probs(method = 'rational')
matrix_display(Pi,X.state_space)
Out[3]:
In [9]:
P2[0][0]
Out[9]:
In [ ]: