In [1]:
from sympy import *; init_session()


IPython console for SymPy 0.7.6 (Python 2.7.9-64-bit) (ground types: python)

These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)
>>> init_printing()

Documentation can be found at http://www.sympy.org

In [2]:
%matplotlib inline

In [3]:
from applpy import *

In [4]:
X = ExponentialRV(Rational(1,100))

In [5]:
X.display()


continuous pdf
for 0 <= x <= oo
---------------------------
 -x 
 ───
 100
ℯ   
────
100 
---------------------------

In [6]:
CDF(X)


continuous cdf
for 0 <= x <= oo
---------------------------
     -x 
     ───
     100
1 - ℯ   
---------------------------
Out[6]:
None

In [7]:
HF(X)


continuous hf
for 0 <= x <= oo
---------------------------
1/100
---------------------------
Out[7]:
None

In [8]:
XX = ExponentialRV()

In [9]:
XX.display()


continuous pdf
for 0 <= x <= oo
---------------------------
   -θ⋅x
θ⋅ℯ    
---------------------------

In [10]:
CDF(XX)


continuous cdf
for 0 <= x <= oo
---------------------------
     -θ⋅x
1 - ℯ    
---------------------------
Out[10]:
None

In [11]:
Inv1 = TriangularRV(-2,1,3)

In [12]:
Inv2 = TriangularRV(-10,3,20)

In [13]:
Inv3 = TriangularRV(-4, 3, 5)

In [14]:
PlotDist(Inv1)



In [15]:
Portfolio = Inv1 + Inv2

In [16]:
Portfolio.display()


continuous pdf
for -12 <= x <= -10
---------------------------
   3⎛ x⎞        2⎛ x⎞         ⎛ x⎞      
log ⎝ℯ ⎠   4⋅log ⎝ℯ ⎠   16⋅log⎝ℯ ⎠    64
──────── + ────────── + ────────── + ───
  8775        975          325       325
---------------------------
 
 
for -10 <= x <= -9
---------------------------
   3⎛ x⎞        2⎛ x⎞         ⎛ x⎞      
log ⎝ℯ ⎠   4⋅log ⎝ℯ ⎠   16⋅log⎝ℯ ⎠    64
──────── + ────────── + ────────── + ───
  8775        975          325       325
---------------------------
 
 
for -9 <= x <= -7
---------------------------
     3⎛ x⎞        2⎛ x⎞      ⎛ x⎞      
  log ⎝ℯ ⎠   7⋅log ⎝ℯ ⎠   log⎝ℯ ⎠    7 
- ──────── - ────────── - ─────── - ───
    5850        1950         50     650
---------------------------
 
 
for -7 <= x <= -2
---------------------------
   ⎛ x⎞      
log⎝ℯ ⎠    28
─────── + ───
  195     585
---------------------------
 
 
for -2 <= x <= 0
---------------------------
   ⎛ x⎞      
log⎝ℯ ⎠    28
─────── + ───
  195     585
---------------------------
 
 
for 0 <= x <= 1
---------------------------
   ⎛ x⎞      
log⎝ℯ ⎠    28
─────── + ───
  195     585
---------------------------
 
 
for 1 <= x <= 3
---------------------------
       3⎛ x⎞        2⎛ x⎞      ⎛ x⎞       
  2⋅log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   log⎝ℯ ⎠   478 
- ────────── + ────────── + ─────── + ────
     9945         3315        221     9945
---------------------------
 
 
for 3 <= x <= 4
---------------------------
       3⎛ x⎞        2⎛ x⎞      ⎛ x⎞       
  2⋅log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   log⎝ℯ ⎠   478 
- ────────── + ────────── + ─────── + ────
     9945         3315        221     9945
---------------------------
 
 
for 4 <= x <= 6
---------------------------
   3⎛ x⎞        2⎛ x⎞         ⎛ x⎞       
log ⎝ℯ ⎠   6⋅log ⎝ℯ ⎠   19⋅log⎝ℯ ⎠   158 
──────── - ────────── + ────────── + ────
  3315        1105         663       9945
---------------------------
 
 
for 6 <= x <= 18
---------------------------
     ⎛ x⎞      
  log⎝ℯ ⎠    62
- ─────── + ───
    255     765
---------------------------
 
 
for 18 <= x <= 20
---------------------------
   3⎛ x⎞        2⎛ x⎞          ⎛ x⎞       
log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   103⋅log⎝ℯ ⎠   1634
──────── - ────────── + ─────────── - ────
 11475        425           1275      3825
---------------------------
 
 
for 20 <= x <= 21
---------------------------
   3⎛ x⎞        2⎛ x⎞          ⎛ x⎞       
log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   103⋅log⎝ℯ ⎠   1634
──────── - ────────── + ─────────── - ────
 11475        425           1275      3825
---------------------------
 
 
for 21 <= x <= 23
---------------------------
     3⎛ x⎞         2⎛ x⎞          ⎛ x⎞        
  log ⎝ℯ ⎠   23⋅log ⎝ℯ ⎠   529⋅log⎝ℯ ⎠   12167
- ──────── + ─────────── - ─────────── + ─────
    7650         2550          2550       7650
---------------------------

In [17]:
PlotDist(Portfolio)



In [18]:
Mean(Portfolio).evalf()


Out[18]:
$$5.0$$

In [19]:
CDF(Portfolio,0).evalf()


Out[19]:
$$0.226068376068376$$

In [20]:
Portfolio2 = Portfolio + Inv3

In [22]:
Portfolio2.display()


continuous pdf
for -16 <= x <= -14
---------------------------
   5⎛ x⎞        4⎛ x⎞          3⎛ x⎞           2⎛ x⎞            ⎛ x⎞          
log ⎝ℯ ⎠   8⋅log ⎝ℯ ⎠   256⋅log ⎝ℯ ⎠   4096⋅log ⎝ℯ ⎠   32768⋅log⎝ℯ ⎠    524288
──────── + ────────── + ──────────── + ───────────── + ───────────── + ───────
5528250      552825        552825          552825          552825      2764125
---------------------------
 
 
for -14 <= x <= -13
---------------------------
   5⎛ x⎞        4⎛ x⎞          3⎛ x⎞           2⎛ x⎞            ⎛ x⎞          
log ⎝ℯ ⎠   8⋅log ⎝ℯ ⎠   256⋅log ⎝ℯ ⎠   4096⋅log ⎝ℯ ⎠   32768⋅log⎝ℯ ⎠    524288
──────── + ────────── + ──────────── + ───────────── + ───────────── + ───────
5528250      552825        552825          552825          552825      2764125
---------------------------
 
 
for -13 <= x <= -12
---------------------------
     5⎛ x⎞         4⎛ x⎞         3⎛ x⎞          2⎛ x⎞           ⎛ x⎞          
  log ⎝ℯ ⎠   11⋅log ⎝ℯ ⎠   37⋅log ⎝ℯ ⎠   133⋅log ⎝ℯ ⎠   3911⋅log⎝ℯ ⎠    26743 
- ──────── - ─────────── - ─────────── - ──────────── - ──────────── + ───────
  3685500       737100        122850        52650          737100      1228500
---------------------------
 
 
for -12 <= x <= -11
---------------------------
     5⎛ x⎞         4⎛ x⎞         3⎛ x⎞          2⎛ x⎞           ⎛ x⎞          
  log ⎝ℯ ⎠   11⋅log ⎝ℯ ⎠   37⋅log ⎝ℯ ⎠   133⋅log ⎝ℯ ⎠   3911⋅log⎝ℯ ⎠    26743 
- ──────── - ─────────── - ─────────── - ──────────── - ──────────── + ───────
  3685500       737100        122850        52650          737100      1228500
---------------------------
 
 
for -11 <= x <= -10
---------------------------
   3⎛ x⎞        2⎛ x⎞           ⎛ x⎞        
log ⎝ℯ ⎠   8⋅log ⎝ℯ ⎠   1073⋅log⎝ℯ ⎠    928 
──────── + ────────── + ──────────── + ─────
 36855        7371         73710       14175
---------------------------
 
 
for -10 <= x <= -9
---------------------------
   3⎛ x⎞        2⎛ x⎞           ⎛ x⎞        
log ⎝ℯ ⎠   8⋅log ⎝ℯ ⎠   1073⋅log⎝ℯ ⎠    928 
──────── + ────────── + ──────────── + ─────
 36855        7371         73710       14175
---------------------------
 
 
for -9 <= x <= -7
---------------------------
     5⎛ x⎞      4⎛ x⎞          3⎛ x⎞           2⎛ x⎞           ⎛ x⎞          
  log ⎝ℯ ⎠   log ⎝ℯ ⎠   233⋅log ⎝ℯ ⎠   1787⋅log ⎝ℯ ⎠   1279⋅log⎝ℯ ⎠    64133 
- ──────── - ──────── - ──────────── - ───────────── - ──────────── + ───────
  1228500     27300        368550          368550         105300      3685500
---------------------------
 
 
for -7 <= x <= -6
---------------------------
     5⎛ x⎞        4⎛ x⎞          3⎛ x⎞          2⎛ x⎞          ⎛ x⎞          
  log ⎝ℯ ⎠   8⋅log ⎝ℯ ⎠   178⋅log ⎝ℯ ⎠   296⋅log ⎝ℯ ⎠   359⋅log⎝ℯ ⎠    77512 
- ──────── - ────────── - ──────────── - ──────────── - ─────────── + ───────
  5528250      552825        552825         110565         78975      2764125
---------------------------
 
 
for -6 <= x <= -5
---------------------------
      5⎛ x⎞          4⎛ x⎞          3⎛ x⎞         2⎛ x⎞           ⎛ x⎞        
41⋅log ⎝ℯ ⎠   103⋅log ⎝ℯ ⎠   227⋅log ⎝ℯ ⎠   38⋅log ⎝ℯ ⎠   4777⋅log⎝ℯ ⎠    1212
─────────── + ──────────── + ──────────── + ─────────── + ──────────── + ─────
  22113000      2211300         552825         22113         552825      27641

  
52
──
25
---------------------------
 
 
for -5 <= x <= -4
---------------------------
      5⎛ x⎞          4⎛ x⎞          3⎛ x⎞         2⎛ x⎞           ⎛ x⎞        
41⋅log ⎝ℯ ⎠   103⋅log ⎝ℯ ⎠   227⋅log ⎝ℯ ⎠   38⋅log ⎝ℯ ⎠   4777⋅log⎝ℯ ⎠    1212
─────────── + ──────────── + ──────────── + ─────────── + ──────────── + ─────
  22113000      2211300         552825         22113         552825      27641

  
52
──
25
---------------------------
 
 
for -4 <= x <= -3
---------------------------
     5⎛ x⎞      4⎛ x⎞      3⎛ x⎞        2⎛ x⎞          ⎛ x⎞         
  log ⎝ℯ ⎠   log ⎝ℯ ⎠   log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   133⋅log⎝ℯ ⎠    5396 
- ──────── - ──────── - ──────── - ────────── + ─────────── + ──────
  1053000     105300     26325       26325         26325      131625
---------------------------
 
 
for -3 <= x <= -2
---------------------------
        5⎛ x⎞          4⎛ x⎞          3⎛ x⎞          2⎛ x⎞            ⎛ x⎞    
  53⋅log ⎝ℯ ⎠   179⋅log ⎝ℯ ⎠   209⋅log ⎝ℯ ⎠   508⋅log ⎝ℯ ⎠   15422⋅log⎝ℯ ⎠    
- ─────────── - ──────────── - ──────────── - ──────────── + ───────────── + ─
    41769000      12530700       3132675        3132675         3132675      1

       
640909 
───────
5663375
---------------------------
 
 
for -2 <= x <= -1
---------------------------
     5⎛ x⎞      4⎛ x⎞        3⎛ x⎞        2⎛ x⎞          ⎛ x⎞         
  log ⎝ℯ ⎠   log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   116⋅log⎝ℯ ⎠    4751 
- ──────── - ──────── - ────────── - ────────── + ─────────── + ──────
  3132675     208845      69615        23205         23205      116025
---------------------------
 
 
for -1 <= x <= 0
---------------------------
     5⎛ x⎞      4⎛ x⎞        3⎛ x⎞        2⎛ x⎞          ⎛ x⎞         
  log ⎝ℯ ⎠   log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   116⋅log⎝ℯ ⎠    4751 
- ──────── - ──────── - ────────── - ────────── + ─────────── + ──────
  3132675     208845      69615        23205         23205      116025
---------------------------
 
 
for 0 <= x <= 1
---------------------------
   5⎛ x⎞      4⎛ x⎞        3⎛ x⎞        2⎛ x⎞          ⎛ x⎞         
log ⎝ℯ ⎠   log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   116⋅log⎝ℯ ⎠    4751 
──────── - ──────── - ────────── - ────────── + ─────────── + ──────
2088450     208845      69615        23205         23205      116025
---------------------------
 
 
for 1 <= x <= 2
---------------------------
   5⎛ x⎞      4⎛ x⎞        3⎛ x⎞        2⎛ x⎞          ⎛ x⎞         
log ⎝ℯ ⎠   log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   116⋅log⎝ℯ ⎠    4751 
──────── - ──────── - ────────── - ────────── + ─────────── + ──────
2088450     208845      69615        23205         23205      116025
---------------------------
 
 
for 2 <= x <= 3
---------------------------
       3⎛ x⎞        2⎛ x⎞          ⎛ x⎞        
  2⋅log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   148⋅log⎝ℯ ⎠    1711
- ────────── - ────────── + ─────────── + ─────
    41769        41769         29835      41769
---------------------------
 
 
for 3 <= x <= 4
---------------------------
       3⎛ x⎞        2⎛ x⎞          ⎛ x⎞        
  2⋅log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   148⋅log⎝ℯ ⎠    1711
- ────────── - ────────── + ─────────── + ─────
    41769        41769         29835      41769
---------------------------
 
 
for 4 <= x <= 5
---------------------------
   5⎛ x⎞        4⎛ x⎞         3⎛ x⎞          2⎛ x⎞          ⎛ x⎞          
log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   38⋅log ⎝ℯ ⎠   202⋅log ⎝ℯ ⎠   284⋅log⎝ℯ ⎠    41239 
──────── - ────────── + ─────────── - ──────────── + ─────────── + ───────
 696150      69615         208845        208845         41769      1044225
---------------------------
 
 
for 5 <= x <= 6
---------------------------
   5⎛ x⎞        4⎛ x⎞         3⎛ x⎞          2⎛ x⎞          ⎛ x⎞          
log ⎝ℯ ⎠   2⋅log ⎝ℯ ⎠   38⋅log ⎝ℯ ⎠   202⋅log ⎝ℯ ⎠   284⋅log⎝ℯ ⎠    41239 
──────── - ────────── + ─────────── - ──────────── + ─────────── + ───────
 696150      69615         208845        208845         41769      1044225
---------------------------
 
 
for 6 <= x <= 7
---------------------------
   5⎛ x⎞      4⎛ x⎞         3⎛ x⎞          2⎛ x⎞         ⎛ x⎞          
log ⎝ℯ ⎠   log ⎝ℯ ⎠   46⋅log ⎝ℯ ⎠   302⋅log ⎝ℯ ⎠   92⋅log⎝ℯ ⎠    50311 
──────── + ──────── - ─────────── + ──────────── - ────────── + ───────
3132675     208845       208845        208845        208845     1044225
---------------------------
 
 
for 7 <= x <= 8
---------------------------
        5⎛ x⎞          4⎛ x⎞          3⎛ x⎞           2⎛ x⎞            ⎛ x⎞   
  41⋅log ⎝ℯ ⎠   109⋅log ⎝ℯ ⎠   827⋅log ⎝ℯ ⎠   5749⋅log ⎝ℯ ⎠   36383⋅log⎝ℯ ⎠   
- ─────────── + ──────────── - ──────────── + ───────────── - ───────────── + 
    12530700       835380         417690          417690          835380      

      
34873 
──────
321300
---------------------------
 
 
for 8 <= x <= 9
---------------------------
        5⎛ x⎞          4⎛ x⎞          3⎛ x⎞           2⎛ x⎞            ⎛ x⎞   
  41⋅log ⎝ℯ ⎠   109⋅log ⎝ℯ ⎠   827⋅log ⎝ℯ ⎠   5749⋅log ⎝ℯ ⎠   36383⋅log⎝ℯ ⎠   
- ─────────── + ──────────── - ──────────── + ───────────── - ───────────── + 
    12530700       835380         417690          417690          835380      

      
34873 
──────
321300
---------------------------
 
 
for 9 <= x <= 11
---------------------------
   5⎛ x⎞         4⎛ x⎞          3⎛ x⎞           2⎛ x⎞            ⎛ x⎞         
log ⎝ℯ ⎠   11⋅log ⎝ℯ ⎠   121⋅log ⎝ℯ ⎠   1331⋅log ⎝ℯ ⎠   14173⋅log⎝ℯ ⎠   109571
──────── - ─────────── + ──────────── - ───────────── + ───────────── - ──────
 596700       119340        59670           59670           119340      596700
---------------------------
 
 
for 11 <= x <= 14
---------------------------
     ⎛ x⎞      
  log⎝ℯ ⎠    22
- ─────── + ───
    255     255
---------------------------
 
 
for 14 <= x <= 16
---------------------------
   5⎛ x⎞      4⎛ x⎞         3⎛ x⎞          2⎛ x⎞           ⎛ x⎞         
log ⎝ℯ ⎠   log ⎝ℯ ⎠   28⋅log ⎝ℯ ⎠   392⋅log ⎝ℯ ⎠   2339⋅log⎝ℯ ⎠    6134 
──────── - ──────── + ─────────── - ──────────── + ──────────── + ──────
7229250     103275       103275        103275         103275      516375
---------------------------
 
 
for 16 <= x <= 17
---------------------------
   5⎛ x⎞      4⎛ x⎞         3⎛ x⎞          2⎛ x⎞           ⎛ x⎞         
log ⎝ℯ ⎠   log ⎝ℯ ⎠   28⋅log ⎝ℯ ⎠   392⋅log ⎝ℯ ⎠   2339⋅log⎝ℯ ⎠    6134 
──────── - ──────── + ─────────── - ──────────── + ──────────── + ──────
7229250     103275       103275        103275         103275      516375
---------------------------
 
 
for 17 <= x <= 18
---------------------------
     5⎛ x⎞         4⎛ x⎞         3⎛ x⎞           2⎛ x⎞             ⎛ x⎞       
  log ⎝ℯ ⎠   19⋅log ⎝ℯ ⎠   13⋅log ⎝ℯ ⎠   6359⋅log ⎝ℯ ⎠   117371⋅log⎝ℯ ⎠    807
- ──────── + ─────────── - ─────────── + ───────────── - ────────────── + ────
  4819500       963900        17850          481950          963900       1606

   
893
───
500
---------------------------
 
 
for 18 <= x <= 19
---------------------------
     5⎛ x⎞         4⎛ x⎞         3⎛ x⎞           2⎛ x⎞             ⎛ x⎞       
  log ⎝ℯ ⎠   19⋅log ⎝ℯ ⎠   13⋅log ⎝ℯ ⎠   6359⋅log ⎝ℯ ⎠   117371⋅log⎝ℯ ⎠    807
- ──────── + ─────────── - ─────────── + ───────────── - ────────────── + ────
  4819500       963900        17850          481950          963900       1606

   
893
───
500
---------------------------
 
 
for 19 <= x <= 20
---------------------------
   3⎛ x⎞         2⎛ x⎞         ⎛ x⎞         
log ⎝ℯ ⎠   10⋅log ⎝ℯ ⎠   37⋅log⎝ℯ ⎠    2621 
──────── - ─────────── + ────────── - ──────
 48195         9639         2754      240975
---------------------------
 
 
for 20 <= x <= 21
---------------------------
   3⎛ x⎞         2⎛ x⎞         ⎛ x⎞         
log ⎝ℯ ⎠   10⋅log ⎝ℯ ⎠   37⋅log⎝ℯ ⎠    2621 
──────── - ─────────── + ────────── - ──────
 48195         9639         2754      240975
---------------------------
 
 
for 21 <= x <= 23
---------------------------
     5⎛ x⎞      4⎛ x⎞           3⎛ x⎞            2⎛ x⎞            ⎛ x⎞        
  log ⎝ℯ ⎠   log ⎝ℯ ⎠   1313⋅log ⎝ℯ ⎠   27283⋅log ⎝ℯ ⎠   81499⋅log⎝ℯ ⎠   12199
- ──────── + ──────── - ───────────── + ────────────── - ───────────── + ─────
  1606500     15300         481950          481950           137700      48195

   
883
───
00 
---------------------------
 
 
for 23 <= x <= 24
---------------------------
     5⎛ x⎞      4⎛ x⎞          3⎛ x⎞          2⎛ x⎞           ⎛ x⎞          
  log ⎝ℯ ⎠   log ⎝ℯ ⎠   118⋅log ⎝ℯ ⎠   332⋅log ⎝ℯ ⎠   8836⋅log⎝ℯ ⎠   2113688
- ──────── + ──────── - ──────────── - ──────────── + ──────────── - ───────
  7229250     103275       722925         144585         103275      3614625
---------------------------
 
 
for 24 <= x <= 25
---------------------------
      5⎛ x⎞          4⎛ x⎞           3⎛ x⎞            2⎛ x⎞              ⎛ x⎞ 
41⋅log ⎝ℯ ⎠   128⋅log ⎝ℯ ⎠   6362⋅log ⎝ℯ ⎠   31436⋅log ⎝ℯ ⎠   1928092⋅log⎝ℯ ⎠ 
─────────── - ──────────── + ───────────── - ────────────── + ─────────────── 
  28917000       722925          722925          144585            722925     

          
  46903448
- ────────
  3614625 
---------------------------
 
 
for 25 <= x <= 26
---------------------------
      5⎛ x⎞          4⎛ x⎞           3⎛ x⎞            2⎛ x⎞              ⎛ x⎞ 
41⋅log ⎝ℯ ⎠   128⋅log ⎝ℯ ⎠   6362⋅log ⎝ℯ ⎠   31436⋅log ⎝ℯ ⎠   1928092⋅log⎝ℯ ⎠ 
─────────── - ──────────── + ───────────── - ────────────── + ─────────────── 
  28917000       722925          722925          144585            722925     

          
  46903448
- ────────
  3614625 
---------------------------
 
 
for 26 <= x <= 28
---------------------------
     5⎛ x⎞        4⎛ x⎞          3⎛ x⎞           2⎛ x⎞            ⎛ x⎞        
  log ⎝ℯ ⎠   7⋅log ⎝ℯ ⎠   196⋅log ⎝ℯ ⎠   5488⋅log ⎝ℯ ⎠   76832⋅log⎝ℯ ⎠   21512
- ──────── + ────────── - ──────────── + ───────────── - ───────────── + ─────
  1377000      68850         34425           34425           34425        1721

  
96
──
25
---------------------------

In [23]:
PlotDist(Portfolio2)



In [24]:
CDF(Portfolio2, 0).evalf()


Out[24]:
$$0.176314491608609$$

In [25]:
Mean(Portfolio2).evalf()


Out[25]:
$$6.33333333333333$$

In [26]:
[Variance(Portfolio).evalf() , Variance(Portfolio2).evalf()]


Out[26]:
$$\left [ 38.7777777777778, \quad 42.5\right ]$$

In [27]:
Mean(X)


Out[27]:
$$100$$

In [28]:
X2 = Maximum(X,X)

In [29]:
X2.display()


continuous pdf
for 0 <= x <= oo
---------------------------
            2                       
  ⎛  x     ⎞   -x    ⎛  x     ⎞  -x 
  ⎜ ───    ⎟   ───   ⎜ ───    ⎟  ───
  ⎜ 100    ⎟    50   ⎜ 100    ⎟  100
  ⎝ℯ    - 1⎠ ⋅ℯ      ⎝ℯ    - 1⎠⋅ℯ   
- ──────────────── + ───────────────
         50                 50      
---------------------------

In [30]:
Mean(X2)


Out[30]:
$$150$$

In [31]:
for i in range(1,11):
    print i
    Sys2 = MaximumIID(X,i)
    Sys2.display()
    print Mean(Sys2).evalf()
    print Sys2.variate(s=0.1)


1
continuous pdf
for 0 <= x <= oo
---------------------------
 -x 
 ───
 100
ℯ   
────
100 
---------------------------
100.000000000000
[10.5360515657826]
2
continuous pdf
for 0 <= x <= oo
---------------------------
            2                       
  ⎛  x     ⎞   -x    ⎛  x     ⎞  -x 
  ⎜ ───    ⎟   ───   ⎜ ───    ⎟  ───
  ⎜ 100    ⎟    50   ⎜ 100    ⎟  100
  ⎝ℯ    - 1⎠ ⋅ℯ      ⎝ℯ    - 1⎠⋅ℯ   
- ──────────────── + ───────────────
         50                 50      
---------------------------
150.000000000000
[38.0130408066172]
3
continuous pdf
for 0 <= x <= oo
---------------------------
     -x       -x       -3⋅x 
     ───      ───      ─────
      50      100       100 
  3⋅ℯ      3⋅ℯ      3⋅ℯ     
- ────── + ────── + ────────
    50      100       100   
---------------------------
183.333333333333
[62.3917586035155]
4
continuous pdf
for 0 <= x <= oo
---------------------------
   -x       -x     -x       -3⋅x 
   ───      ───    ───      ─────
    25       50    100       100 
  ℯ      3⋅ℯ      ℯ      3⋅ℯ     
- ──── - ────── + ──── + ────────
   25      25      25       25   
---------------------------
208.333333333333
[82.6315953659673]
5
continuous pdf
for 0 <= x <= oo
---------------------------
 -x     -x     -x     -x       -3⋅x 
 ───    ───    ───    ───      ─────
  20     25     50    100       100 
ℯ      ℯ      ℯ      ℯ      3⋅ℯ     
──── - ──── - ──── + ──── + ────────
 20     5      5      20       10   
---------------------------
228.333333333333
[99.6843044007847]
6
continuous pdf
for 0 <= x <= oo
---------------------------
   -x       -x       -x       -3⋅x       -x       -3⋅x 
   ───      ───      ───      ─────      ───      ─────
    20       25       50        50       100       100 
3⋅ℯ      3⋅ℯ      3⋅ℯ      3⋅ℯ        3⋅ℯ      3⋅ℯ     
────── - ────── - ────── - ──────── + ────── + ────────
  10       5        10        50        50        5    
---------------------------
245.000000000000
[114.348017257812]
7
continuous pdf
for 0 <= x <= oo
---------------------------
    -x       -x        -x        -3⋅x       -x        -3⋅x       -7⋅x 
    ───      ───       ───       ─────      ───       ─────      ─────
     20       25        50         50       100        100        100 
21⋅ℯ      7⋅ℯ      21⋅ℯ      21⋅ℯ        7⋅ℯ      21⋅ℯ        7⋅ℯ     
─────── - ────── - ─────── - ───────── + ────── + ───────── + ────────
   20       5         50         50       100         20        100   
---------------------------
259.285714285714
[127.184370902862]
8
continuous pdf
for 0 <= x <= oo
---------------------------
    -x        -x       -2⋅x        -x        -3⋅x       -x        -3⋅x        
    ───       ───      ─────       ───       ─────      ───       ─────       
     20        25        25         50         50       100        100        
14⋅ℯ      14⋅ℯ      2⋅ℯ        14⋅ℯ      42⋅ℯ        2⋅ℯ      42⋅ℯ        14⋅ℯ
─────── - ─────── - ──────── - ─────── - ───────── + ────── + ───────── + ────
   5         5         25         25         25        25         25          

-7⋅x 
─────
 100 
     
─────
25   
---------------------------
271.785714285714
[138.587128795779]
9
continuous pdf
for 0 <= x <= oo
---------------------------
    -x         -x        -2⋅x        -x         -3⋅x       -x        -3⋅x     
    ───        ───       ─────       ───        ─────      ───       ─────    
     20         25         25         50          50       100        100     
63⋅ℯ      126⋅ℯ      18⋅ℯ        18⋅ℯ      126⋅ℯ        9⋅ℯ      63⋅ℯ        6
─────── - ──────── - ───────── - ─────── - ────────── + ────── + ───────── + ─
   10        25          25         25         25        100         25       

   -7⋅x       -9⋅x 
   ─────      ─────
    100        100 
3⋅ℯ        9⋅ℯ     
──────── + ────────
   25        100   
---------------------------
282.896825396825
[148.838769840507]
10
continuous pdf
for 0 <= x <= oo
---------------------------
   -x        -x        -x        -2⋅x       -x        -3⋅x     -x        -3⋅x 
   ───       ───       ───       ─────      ───       ─────    ───       ─────
    10        20        25         25        50         50     100        100 
  ℯ      63⋅ℯ      42⋅ℯ      18⋅ℯ        9⋅ℯ      63⋅ℯ        ℯ      18⋅ℯ     
- ──── + ─────── - ─────── - ───────── - ────── - ───────── + ──── + ─────────
   10       5         5          5         10         5        10        5    

       -7⋅x       -9⋅x 
       ─────      ─────
        100        100 
   42⋅ℯ        9⋅ℯ     
 + ───────── + ────────
       5          10   
---------------------------
292.896825396825
[158.147375340846]

In [32]:
System2 = Minimum(X, Minimum(Maximum(X,X) , Maximum(X,X)))

In [33]:
System2.display()


continuous pdf
for 0 <= x <= oo
---------------------------
 -x       -x       -3⋅x 
 ───      ───      ─────
  20       25       100 
ℯ      4⋅ℯ      3⋅ℯ     
──── - ────── + ────────
 20      25        25   
---------------------------

In [34]:
BallBearing = [17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40]

In [35]:
len(BallBearing)


Out[35]:
$$23$$

In [36]:
Bstar = BootstrapRV(BallBearing)

In [37]:
Bstar.display()


discrete pdf where {x->f(x)}:
{17.88 -> 1/23},  {28.92 -> 1/23},  {33.0 -> 1/23},  {41.52 -> 1/23},  {42.12 -> 1/23},  {45.6 -> 1/23},  {48.48 -> 1/23},  {51.84 -> 1/23},  {51.96 -> 1/23},  {54.12 -> 1/23},  {55.56 -> 1/23},  {67.8 -> 1/23},  {68.64 -> 2/23},  {68.88 -> 1/23},  {84.12 -> 1/23},  {93.12 -> 1/23},  {98.64 -> 1/23},  {105.12 -> 1/23},  {105.84 -> 1/23},  {127.92 -> 1/23},  {128.04 -> 1/23},  {173.4 -> 1/23}

In [38]:
PlotDist(CDF(Bstar))



In [39]:
Sys2 = MaximumIID(Bstar,2)

In [40]:
Sys2.display()


discrete pdf where {x->f(x)}:
{17.88 -> 1/529},  {28.92 -> 3/529},  {33.0 -> 5/529},  {41.52 -> 7/529},  {42.12 -> 9/529},  {45.6 -> 11/529},  {48.48 -> 13/529},  {51.84 -> 15/529},  {51.96 -> 17/529},  {54.12 -> 19/529},  {55.56 -> 21/529},  {67.8 -> 1/23},  {68.64 -> 52/529},  {68.88 -> 29/529},  {84.12 -> 31/529},  {93.12 -> 33/529},  {98.64 -> 35/529},  {105.12 -> 37/529},  {105.84 -> 39/529},  {127.92 -> 41/529},  {128.04 -> 43/529},  {173.4 -> 45/529}

In [41]:
PlotDist(PDF(Sys2))



In [42]:
PlotDist(CDF(Sys2))



In [43]:
[Mean(Bstar), Mean(Sys2)]


Out[43]:
$$\left [ 72.224347826087, \quad 92.168393194707\right ]$$

In [44]:
Sys3 = ConvolutionIID(Bstar,3)

In [45]:
Sys3.display()


discrete pdf where {x->f(x)}:
{53.64 -> 1/12167},  {64.68 -> 2/12167},  {64.68 -> 1/12167},  {68.76 -> 3/12167},  {75.72 -> 3/12167},  {77.28 -> 3/12167},  {77.88 -> 3/12167},  {79.8 -> 6/12167},  {81.36 -> 3/12167},  {83.88 -> 3/12167},  {84.24 -> 3/12167},  {86.76 -> 1/12167},  {87.6 -> 3/12167},  {87.72 -> 3/12167},  {88.32 -> 4/12167},  {88.32 -> 2/12167},  {88.92 -> 4/12167},  {88.92 -> 2/12167},  {89.88 -> 3/12167},  {90.84 -> 3/12167},  {91.32 -> 3/12167},  {92.4 -> 12/12167},  {93.0 -> 6/12167},  {94.92 -> 3/12167},  {95.28 -> 6/12167},  {96.48 -> 4/12167},  {96.48 -> 2/12167},  {98.64 -> 6/12167},  {98.76 -> 4/12167},  {98.76 -> 2/12167},  {99.0 -> 1/12167},  {99.36 -> 4/12167},  {99.36 -> 4/12167},  {99.36 -> 1/12167},  {99.96 -> 2/12167},  {99.96 -> 1/12167},  {100.92 -> 4/12167},  {100.92 -> 3/12167},  {100.92 -> 2/12167},  {101.52 -> 2/12167},  {101.52 -> 4/12167},  {102.12 -> 1/12167},  {102.12 -> 2/12167},  {102.36 -> 6/12167},  {102.72 -> 6/12167},  {102.84 -> 6/12167},  {103.44 -> 5/12167},  {103.44 -> 4/12167},  {103.56 -> 2/12167},  {103.56 -> 1/12167},  {104.04 -> 4/12167},  {104.04 -> 2/12167},  {104.4 -> 4/12167},  {104.4 -> 2/12167},  {104.64 -> 3/12167},  {105.0 -> 12/12167},  {105.6 -> 6/12167},  {106.32 -> 1/12167},  {106.32 -> 2/12167},  {106.44 -> 6/12167},  {107.52 -> 2/12167},  {107.52 -> 7/12167},  {107.88 -> 6/12167},  {108.12 -> 3/12167},  {108.48 -> 6/12167},  {109.08 -> 1/12167},  {109.08 -> 2/12167},  {109.68 -> 3/12167},  {109.8 -> 2/12167},  {109.8 -> 1/12167},  {110.4 -> 2/12167},  {110.4 -> 4/12167},  {111.24 -> 6/12167},  {111.36 -> 2/12167},  {111.36 -> 4/12167},  {111.6 -> 3/12167},  {111.84 -> 6/12167},  {111.96 -> 6/12167},  {111.96 -> 12/12167},  {112.56 -> 6/12167},  {113.16 -> 3/12167},  {113.4 -> 3/12167},  {113.52 -> 2/12167},  {113.52 -> 4/12167},  {113.76 -> 6/12167},  {113.88 -> 4/12167},  {113.88 -> 2/12167},  {114.12 -> 2/12167},  {114.12 -> 4/12167},  {114.48 -> 3/12167},  {114.6 -> 6/12167},  {114.84 -> 1/12167},  {114.84 -> 2/12167},  {114.96 -> 6/12167},  {115.32 -> 4/12167},  {115.32 -> 2/12167},  {115.44 -> 18/12167},  {115.56 -> 6/12167},  {115.68 -> 6/12167},  {116.04 -> 6/12167},  {116.04 -> 5/12167},  {116.04 -> 4/12167},  {116.64 -> 2/12167},  {116.64 -> 4/12167},  {116.64 -> 6/12167},  {117.24 -> 1/12167},  {117.24 -> 2/12167},  {117.48 -> 6/12167},  {117.6 -> 6/12167},  {117.84 -> 3/12167},  {117.96 -> 3/12167},  {118.2 -> 4/12167},  {118.2 -> 2/12167},  {118.32 -> 6/12167},  {118.68 -> 6/12167},  {118.92 -> 2/12167},  {118.92 -> 2/12167},  {118.92 -> 2/12167},  {119.04 -> 4/12167},  {119.04 -> 2/12167},  {119.52 -> 2/12167},  {119.52 -> 14/12167},  {119.52 -> 2/12167},  {119.76 -> 6/12167},  {119.88 -> 3/12167},  {120.12 -> 12/12167},  {120.48 -> 6/12167},  {120.72 -> 6/12167},  {121.56 -> 6/12167},  {121.68 -> 6/12167},  {121.8 -> 1/12167},  {121.8 -> 2/12167},  {121.92 -> 4/12167},  {121.92 -> 2/12167},  {122.28 -> 4/12167},  {122.28 -> 2/12167},  {122.4 -> 6/12167},  {122.88 -> 4/12167},  {122.88 -> 2/12167},  {123.0 -> 18/12167},  {123.6 -> 6/12167},  {123.84 -> 6/12167},  {123.96 -> 2/12167},  {123.96 -> 4/12167},  {124.2 -> 2/12167},  {124.2 -> 1/12167},  {124.56 -> 7/12167},  {125.16 -> 9/12167},  {125.28 -> 6/12167},  {125.4 -> 6/12167},  {125.64 -> 3/12167},  {125.76 -> 3/12167},  {125.88 -> 3/12167},  {126.0 -> 4/12167},  {126.0 -> 2/12167},  {126.12 -> 1/12167},  {126.12 -> 2/12167},  {126.36 -> 1/12167},  {126.36 -> 2/12167},  {126.36 -> 10/12167},  {126.48 -> 2/12167},  {126.48 -> 10/12167},  {126.48 -> 6/12167},  {126.6 -> 4/12167},  {126.6 -> 2/12167},  {126.72 -> 3/12167},  {126.96 -> 6/12167},  {127.08 -> 4/12167},  {127.08 -> 4/12167},  {127.08 -> 4/12167},  {127.2 -> 4/12167},  {127.2 -> 2/12167},  {127.56 -> 6/12167},  {127.8 -> 4/12167},  {127.8 -> 2/12167},  {128.04 -> 8/12167},  {128.04 -> 4/12167},  {128.28 -> 6/12167},  {128.64 -> 18/12167},  {128.64 -> 9/12167},  {128.88 -> 9/12167},  {129.0 -> 3/12167},  {129.24 -> 18/12167},  {129.36 -> 2/12167},  {129.36 -> 4/12167},  {129.72 -> 6/12167},  {129.84 -> 3/12167},  {129.96 -> 3/12167},  {130.08 -> 2/12167},  {130.08 -> 10/12167},  {130.44 -> 6/12167},  {130.56 -> 18/12167},  {130.68 -> 6/12167},  {130.8 -> 6/12167},  {130.92 -> 6/12167},  {131.28 -> 6/12167},  {131.52 -> 4/12167},  {131.52 -> 5/12167},  {132.12 -> 18/12167},  {132.36 -> 4/12167},  {132.36 -> 2/12167},  {132.6 -> 3/12167},  {132.72 -> 16/12167},  {132.72 -> 2/12167},  {132.84 -> 3/12167},  {132.96 -> 2/12167},  {132.96 -> 4/12167},  {133.32 -> 9/12167},  {133.44 -> 6/12167},  {133.8 -> 3/12167},  {134.16 -> 12/12167},  {134.4 -> 3/12167},  {134.64 -> 6/12167},  {134.88 -> 10/12167},  {134.88 -> 2/12167},  {135.0 -> 27/12167},  {135.24 -> 4/12167},  {135.24 -> 2/12167},  {135.48 -> 6/12167},  {135.6 -> 18/12167},  {136.08 -> 1/12167},  {136.08 -> 2/12167},  {136.2 -> 9/12167},  {136.32 -> 6/12167},  {136.44 -> 6/12167},  {136.68 -> 3/12167},  {136.8 -> 7/12167},  {136.92 -> 3/12167},  {137.04 -> 6/12167},  {137.16 -> 6/12167},  {137.52 -> 4/12167},  {137.52 -> 2/12167},  {137.64 -> 6/12167},  {137.76 -> 6/12167},  {138.24 -> 6/12167},  {138.36 -> 3/12167},  {138.36 -> 12/12167},  {138.48 -> 11/12167},  {138.48 -> 4/12167},  {138.6 -> 10/12167},  {138.6 -> 5/12167},  {138.72 -> 6/12167},  {138.84 -> 4/12167},  {138.84 -> 2/12167},  {138.96 -> 12/12167},  {139.08 -> 13/12167},  {139.08 -> 14/12167},  {139.2 -> 2/12167},  {139.2 -> 4/12167},  {139.32 -> 6/12167},  {139.56 -> 6/12167},  {139.68 -> 21/12167},  {139.8 -> 4/12167},  {139.8 -> 5/12167},  {139.92 -> 4/12167},  {139.92 -> 8/12167},  {140.04 -> 3/12167},  {140.4 -> 6/12167},  {140.52 -> 6/12167},  {140.64 -> 12/12167},  {140.88 -> 9/12167},  {141.24 -> 15/12167},  {141.6 -> 3/12167},  {141.84 -> 12/12167},  {141.96 -> 9/12167},  {142.08 -> 8/12167},  {142.08 -> 4/12167},  {142.32 -> 18/12167},  {142.44 -> 6/12167},  {142.56 -> 9/12167},  {142.68 -> 12/12167},  {142.92 -> 4/12167},  {142.92 -> 2/12167},  {143.04 -> 2/12167},  {143.04 -> 1/12167},  {143.16 -> 15/12167},  {143.16 -> 12/12167},  {143.28 -> 6/12167},  {143.4 -> 2/12167},  {143.4 -> 10/12167},  {143.52 -> 6/12167},  {143.76 -> 12/12167},  {144.0 -> 12/12167},  {144.12 -> 15/12167},  {144.72 -> 6/12167},  {145.2 -> 6/12167},  {145.2 -> 3/12167},  {145.32 -> 5/12167},  {145.32 -> 4/12167},  {145.44 -> 10/12167},  {145.56 -> 6/12167},  {145.8 -> 3/12167},  {145.92 -> 4/12167},  {145.92 -> 8/12167},  {146.04 -> 13/12167},  {146.04 -> 14/12167},  {146.16 -> 6/12167},  {146.28 -> 2/12167},  {146.28 -> 4/12167},  {146.4 -> 2/12167},  {146.4 -> 4/12167},  {146.76 -> 3/12167},  {147.24 -> 12/12167},  {147.48 -> 6/12167},  {147.48 -> 6/12167},  {147.6 -> 10/12167},  {147.6 -> 2/12167},  {148.08 -> 2/12167},  {148.08 -> 4/12167},  {148.2 -> 12/12167},  {148.56 -> 6/12167},  {148.68 -> 6/12167},  {148.8 -> 2/12167},  {148.8 -> 1/12167},  {148.92 -> 3/12167},  {148.92 -> 6/12167},  {149.04 -> 6/12167},  {149.28 -> 2/12167},  {149.28 -> 7/12167},  {149.4 -> 18/12167},  {149.52 -> 14/12167},  {149.52 -> 13/12167},  {149.64 -> 14/12167},  {149.64 -> 4/12167},  {149.76 -> 9/12167},  {150.12 -> 15/12167},  {150.36 -> 9/12167},  {150.48 -> 4/12167},  {150.48 -> 2/12167},  {150.84 -> 4/12167},  {150.84 -> 5/12167},  {150.96 -> 3/12167},  {151.08 -> 3/12167},  {151.2 -> 2/12167},  {151.2 -> 4/12167},  {151.44 -> 6/12167},  {151.56 -> 6/12167},  {151.68 -> 24/12167},  {151.8 -> 6/12167},  {151.92 -> 4/12167},  {151.92 -> 11/12167},  {152.04 -> 3/12167},  {152.16 -> 3/12167},  {152.28 -> 24/12167},  {152.4 -> 3/12167},  {152.52 -> 5/12167},  {152.52 -> 10/12167},  {152.64 -> 12/12167},  {152.64 -> 3/12167},  {152.76 -> 6/12167},  {152.88 -> 6/12167},  {153.0 -> 6/12167},  {153.12 -> 27/12167},  {153.24 -> 3/12167},  {153.36 -> 6/12167},  {153.48 -> 3/12167},  {153.48 -> 12/12167},  {153.6 -> 8/12167},  {153.6 -> 4/12167},  {153.72 -> 6/12167},  {153.84 -> 15/12167},  {153.96 -> 6/12167},  {154.32 -> 12/12167},  {154.44 -> 6/12167},  {154.56 -> 18/12167},  {154.92 -> 6/12167},  {154.92 -> 6/12167},  {155.04 -> 6/12167},  {155.16 -> 16/12167},  {155.16 -> 2/12167},  {155.28 -> 6/12167},  {155.4 -> 12/12167},  {155.52 -> 4/12167},  {155.52 -> 3/12167},  {155.64 -> 3/12167},  {155.64 -> 3/12167},  {155.76 -> 21/12167},  {155.76 -> 6/12167},  {155.88 -> 7/12167},  {156.0 -> 24/12167},  {156.12 -> 6/12167},  {156.36 -> 4/12167},  {156.36 -> 14/12167},  {156.48 -> 3/12167},  {156.6 -> 10/12167},  {156.6 -> 2/12167},  {156.72 -> 12/12167},  {157.2 -> 12/12167},  {157.44 -> 6/12167},  {157.56 -> 6/12167},  {157.8 -> 2/12167},  {157.8 -> 7/12167},  {157.92 -> 6/12167},  {158.04 -> 7/12167},  {158.04 -> 2/12167},  {158.16 -> 6/12167},  {158.4 -> 4/12167},  {158.4 -> 2/12167},  {158.64 -> 16/12167},  {158.64 -> 14/12167},  {158.88 -> 6/12167},  {159.0 -> 3/12167},  {159.12 -> 3/12167},  {159.24 -> 4/12167},  {159.24 -> 17/12167},  {159.36 -> 6/12167},  {159.48 -> 10/12167},  {159.48 -> 5/12167},  {159.6 -> 3/12167},  {159.84 -> 6/12167},  {160.08 -> 4/12167},  {160.08 -> 2/12167},  {160.2 -> 3/12167},  {160.56 -> 6/12167},  {161.16 -> 4/12167},  {161.16 -> 2/12167},  {161.28 -> 6/12167},  {161.52 -> 2/12167},  {161.52 -> 10/12167},  {161.64 -> 2/12167},  {161.64 -> 4/12167},  {161.76 -> 6/12167},  {161.88 -> 12/12167},  {162.0 -> 12/12167},  {162.12 -> 18/12167},  {162.24 -> 6/12167},  {162.36 -> 1/12167},  {162.36 -> 6/12167},  {162.6 -> 8/12167},  {162.6 -> 4/12167},  {162.72 -> 30/12167},  {162.84 -> 12/12167},  {162.96 -> 8/12167},  {162.96 -> 14/12167},  {162.96 -> 2/12167},  {163.08 -> 3/12167},  {163.44 -> 6/12167},  {163.56 -> 6/12167},  {163.68 -> 6/12167},  {163.8 -> 3/12167},  {163.8 -> 3/12167},  {164.04 -> 6/12167},  {164.16 -> 4/12167},  {164.16 -> 2/12167},  {164.28 -> 12/12167},  {164.52 -> 5/12167},  {164.52 -> 10/12167},  {164.64 -> 3/12167},  {164.76 -> 3/12167},  {164.88 -> 24/12167},  {165.0 -> 12/12167},  {165.12 -> 18/12167},  {165.24 -> 15/12167},  {165.36 -> 2/12167},  {165.36 -> 16/12167},  {165.48 -> 4/12167},  {165.48 -> 2/12167},  {165.6 -> 16/12167},  {165.6 -> 2/12167},  {165.72 -> 8/12167},  {165.72 -> 4/12167},  {165.84 -> 3/12167},  {165.84 -> 6/12167},  {165.96 -> 6/12167},  {166.08 -> 4/12167},  {166.08 -> 8/12167},  {166.2 -> 20/12167},  {166.2 -> 4/12167},  {166.32 -> 18/12167},  {166.44 -> 18/12167},  {166.56 -> 12/12167},  {166.68 -> 4/12167},  {167.04 -> 6/12167},  {167.16 -> 4/12167},  {167.16 -> 5/12167},  {167.52 -> 4/12167},  {167.52 -> 2/12167},  {167.64 -> 2/12167},  {167.64 -> 10/12167},  {167.76 -> 8/12167},  {167.76 -> 4/12167},  {168.12 -> 6/12167},  {168.24 -> 2/12167},  {168.24 -> 10/12167},  {168.36 -> 4/12167},  {168.36 -> 17/12167},  {168.48 -> 4/12167},  {168.48 -> 2/12167},  {168.6 -> 13/12167},  {168.6 -> 8/12167},  {168.96 -> 6/12167},  {168.96 -> 18/12167},  {169.08 -> 12/12167},  {169.08 -> 12/12167},  {169.2 -> 6/12167},  {169.32 -> 12/12167},  {169.44 -> 12/12167},  {169.68 -> 12/12167},  {169.8 -> 18/12167},  {170.04 -> 6/12167},  {170.28 -> 12/12167},  {170.4 -> 4/12167},  {170.4 -> 2/12167},  {170.52 -> 14/12167},  {170.52 -> 4/12167},  {170.64 -> 18/12167},  {170.76 -> 3/12167},  {170.88 -> 6/12167},  {171.12 -> 3/12167},  {171.24 -> 4/12167},  {171.24 -> 20/12167},  {171.48 -> 10/12167},  {171.48 -> 5/12167},  {171.6 -> 4/12167},  {171.6 -> 2/12167},  {171.72 -> 9/12167},  {171.84 -> 2/12167},  {171.84 -> 13/12167},  {172.08 -> 6/12167},  {172.2 -> 6/12167},  {172.32 -> 6/12167},  {172.44 -> 12/12167},  {172.56 -> 9/12167},  {172.68 -> 24/12167},  {172.8 -> 3/12167},  {172.92 -> 6/12167},  {173.16 -> 6/12167},  {173.16 -> 6/12167},  {173.76 -> 12/12167},  {173.88 -> 12/12167},  {174.0 -> 6/12167},  {174.12 -> 6/12167},  {174.6 -> 14/12167},  {174.6 -> 4/12167},  {174.72 -> 22/12167},  {174.72 -> 2/12167},  {174.84 -> 6/12167},  {174.84 -> 12/12167},  {174.96 -> 2/12167},  {174.96 -> 10/12167},  {175.2 -> 6/12167},  {175.32 -> 9/12167},  {175.56 -> 10/12167},  {175.56 -> 2/12167},  {175.68 -> 6/12167},  {176.04 -> 5/12167},  {176.04 -> 16/12167},  {176.16 -> 14/12167},  {176.16 -> 13/12167},  {176.28 -> 10/12167},  {176.28 -> 2/12167},  {176.4 -> 6/12167},  {176.76 -> 2/12167},  {176.76 -> 4/12167},  {176.88 -> 12/12167},  {177.12 -> 12/12167},  {177.24 -> 2/12167},  {177.24 -> 4/12167},  {177.36 -> 3/12167},  {177.48 -> 4/12167},  {177.48 -> 8/12167},  {177.6 -> 12/12167},  {177.72 -> 2/12167},  {177.72 -> 1/12167},  {177.84 -> 6/12167},  {177.96 -> 8/12167},  {177.96 -> 10/12167},  {178.08 -> 12/12167},  {178.2 -> 12/12167},  {178.2 -> 6/12167},  {178.32 -> 12/12167},  {178.56 -> 24/12167},  {178.8 -> 2/12167},  {178.8 -> 28/12167},  {178.92 -> 6/12167},  {178.92 -> 3/12167},  {179.04 -> 8/12167},  {179.04 -> 4/12167},  {179.28 -> 9/12167},  {179.4 -> 8/12167},  {179.4 -> 8/12167},  {179.4 -> 2/12167},  {179.52 -> 4/12167},  {179.52 -> 2/12167},  {179.64 -> 26/12167},  {179.64 -> 10/12167},  {179.76 -> 8/12167},  {179.76 -> 4/12167},  {179.88 -> 9/12167},  {180.0 -> 3/12167},  {180.12 -> 2/12167},  {180.12 -> 4/12167},  {180.24 -> 18/12167},  {180.36 -> 2/12167},  {180.36 -> 16/12167},  {180.84 -> 10/12167},  {180.84 -> 2/12167},  {180.96 -> 6/12167},  {181.08 -> 3/12167},  {181.2 -> 3/12167},  {181.2 -> 6/12167},  {181.56 -> 6/12167},  {181.68 -> 33/12167},  {181.8 -> 6/12167},  {181.92 -> 6/12167},  {182.04 -> 4/12167},  {182.04 -> 8/12167},  {182.28 -> 2/12167},  {182.28 -> 10/12167},  {182.52 -> 2/12167},  {182.52 -> 4/12167},  {182.88 -> 15/12167},  {183.12 -> 4/12167},  {183.12 -> 20/12167},  {183.24 -> 2/12167},  {183.24 -> 4/12167},  {183.36 -> 3/12167},  {183.48 -> 2/12167},  {183.48 -> 4/12167},  {183.6 -> 4/12167},  {183.6 -> 2/12167},  {183.72 -> 12/12167},  {183.84 -> 6/12167},  {184.08 -> 3/12167},  {184.32 -> 9/12167},  {184.44 -> 12/12167},  {184.56 -> 6/12167},  {184.92 -> 4/12167},  {184.92 -> 14/12167},  {185.16 -> 2/12167},  {185.16 -> 16/12167},  {185.28 -> 6/12167},  {185.4 -> 6/12167},  {185.76 -> 37/12167},  {185.76 -> 2/12167},  {185.88 -> 7/12167},  {185.88 -> 2/12167},  {186.0 -> 4/12167},  {186.0 -> 18/12167},  {186.0 -> 2/12167},  {186.12 -> 3/12167},  {186.24 -> 3/12167},  {186.36 -> 2/12167},  {186.36 -> 4/12167},  {186.48 -> 6/12167},  {186.6 -> 8/12167},  {186.6 -> 10/12167},  {186.72 -> 10/12167},  {186.72 -> 2/12167},  {187.08 -> 6/12167},  {187.2 -> 14/12167},  {187.2 -> 4/12167},  {187.32 -> 10/12167},  {187.32 -> 2/12167},  {187.44 -> 9/12167},  {187.56 -> 3/12167},  {187.8 -> 3/12167},  {187.92 -> 2/12167},  {187.92 -> 10/12167},  {188.04 -> 6/12167},  {188.04 -> 3/12167},  {188.16 -> 8/12167},  {188.16 -> 7/12167},  {188.28 -> 12/12167},  {188.4 -> 8/12167},  {188.4 -> 4/12167},  {188.52 -> 4/12167},  {188.52 -> 2/12167},  {188.64 -> 8/12167},  {188.64 -> 4/12167},  {188.76 -> 4/12167},  {188.76 -> 8/12167},  {188.88 -> 7/12167},  {188.88 -> 2/12167},  {189.12 -> 12/12167},  {189.24 -> 2/12167},  {189.24 -> 16/12167},  {189.36 -> 4/12167},  {189.36 -> 17/12167},  {189.48 -> 8/12167},  {189.48 -> 10/12167},  {189.6 -> 3/12167},  {189.6 -> 6/12167},  {189.72 -> 2/12167},  {189.72 -> 4/12167},  {189.84 -> 11/12167},  {189.84 -> 4/12167},  {189.96 -> 6/12167},  {189.96 -> 6/12167},  {190.08 -> 4/12167},  {190.08 -> 14/12167},  {190.2 -> 2/12167},  {190.2 -> 10/12167},  {190.32 -> 6/12167},  {190.56 -> 18/12167},  {190.68 -> 24/12167},  {190.8 -> 2/12167},  {190.8 -> 22/12167},  {190.92 -> 6/12167},  {191.16 -> 3/12167},  {191.4 -> 8/12167},  {191.4 -> 10/12167},  {191.52 -> 12/12167},  {191.52 -> 6/12167},  {191.64 -> 24/12167},  {191.64 -> 6/12167},  {191.88 -> 9/12167},  {192.0 -> 16/12167},  {192.0 -> 2/12167},  {192.12 -> 6/12167},  {192.24 -> 18/12167},  {192.36 -> 15/12167},  {192.6 -> 8/12167},  {192.6 -> 4/12167},  {192.72 -> 12/12167},  {192.84 -> 24/12167},  {192.96 -> 12/12167},  {193.08 -> 12/12167},  {193.32 -> 3/12167},  {193.44 -> 10/12167},  {193.44 -> 2/12167},  {193.56 -> 12/12167},  {193.68 -> 6/12167},  {193.8 -> 6/12167},  {193.92 -> 9/12167},  {194.04 -> 5/12167},  {194.04 -> 4/12167},  {194.28 -> 26/12167},  {194.28 -> 4/12167},  {194.4 -> 6/12167},  {194.4 -> 6/12167},  {194.52 -> 6/12167},  {194.76 -> 12/12167},  {194.88 -> 18/12167},  {195.0 -> 6/12167},  {195.12 -> 18/12167},  {195.24 -> 3/12167},  {195.36 -> 6/12167},  {195.6 -> 3/12167},  {195.72 -> 16/12167},  {195.72 -> 2/12167},  {195.84 -> 6/12167},  {196.08 -> 2/12167},  {196.08 -> 4/12167},  {196.2 -> 16/12167},  {196.2 -> 2/12167},  {196.32 -> 9/12167},  {196.44 -> 12/12167},  {196.8 -> 3/12167},  {196.92 -> 6/12167},  {197.04 -> 2/12167},  {197.04 -> 4/12167},  {197.16 -> 6/12167},  {197.16 -> 3/12167},  {197.52 -> 2/12167},  {197.52 -> 4/12167},  {197.64 -> 4/12167},  {197.64 -> 2/12167},  {197.76 -> 10/12167},  {197.76 -> 2/12167},  {197.88 -> 6/12167},  {198.36 -> 6/12167},  {198.36 -> 18/12167},  {198.48 -> 4/12167},  {198.48 -> 8/12167},  {198.6 -> 6/12167},  {198.6 -> 6/12167},  {198.96 -> 6/12167},  {198.96 -> 6/12167},  {199.08 -> 10/12167},  {199.08 -> 14/12167},  {199.2 -> 10/12167},  {199.2 -> 14/12167},  {199.32 -> 2/12167},  {199.32 -> 4/12167},  {199.44 -> 6/12167},  {199.8 -> 2/12167},  {199.8 -> 10/12167},  {199.92 -> 6/12167},  {199.92 -> 12/12167},  {200.04 -> 6/12167},  {200.28 -> 4/12167},  {200.28 -> 8/12167},  {200.4 -> 2/12167},  {200.4 -> 4/12167},  {200.52 -> 6/12167},  {200.52 -> 6/12167},  {200.64 -> 6/12167},  {200.64 -> 6/12167},  {200.76 -> 2/12167},  {200.76 -> 4/12167},  {201.24 -> 6/12167},  {201.24 -> 15/12167},  {201.36 -> 15/12167},  {201.48 -> 12/12167},  {201.48 -> 6/12167},  {201.84 -> 2/12167},  {201.84 -> 4/12167},  {202.08 -> 5/12167},  {202.08 -> 4/12167},  {202.2 -> 6/12167},  {202.32 -> 1/12167},  {202.32 -> 2/12167},  {202.44 -> 18/12167},  {202.44 -> 6/12167},  {202.56 -> 2/12167},  {202.56 -> 25/12167},  {202.68 -> 2/12167},  {202.68 -> 22/12167},  {202.8 -> 2/12167},  {202.8 -> 13/12167},  {202.92 -> 12/12167},  {203.04 -> 4/12167},  {203.04 -> 8/12167},  {203.16 -> 6/12167},  {203.28 -> 14/12167},  {203.28 -> 4/12167},  {203.4 -> 5/12167},  {203.4 -> 10/12167},  {203.4 -> 4/12167},  {203.52 -> 12/12167},  {203.64 -> 6/12167},  {203.76 -> 4/12167},  {203.76 -> 2/12167},  {203.88 -> 16/12167},  {203.88 -> 2/12167},  {204.12 -> 9/12167},  {204.24 -> 9/12167},  {204.48 -> 1/12167},  {204.48 -> 2/12167},  {204.6 -> 6/12167},  {204.6 -> 12/12167},  {204.72 -> 14/12167},  {204.72 -> 4/12167},  {204.84 -> 12/12167},  {204.96 -> 6/12167},  {205.08 -> 12/12167},  {205.32 -> 18/12167},  {205.44 -> 2/12167},  {205.44 -> 10/12167},  {205.56 -> 15/12167},  {205.92 -> 14/12167},  {206.04 -> 4/12167},  {206.04 -> 8/12167},  {206.16 -> 8/12167},  {206.16 -> 14/12167},  {206.16 -> 8/12167},  {206.28 -> 12/12167},  {206.4 -> 6/12167},  {206.52 -> 4/12167},  {206.52 -> 8/12167},  {206.64 -> 13/12167},  {206.76 -> 12/12167},  {206.88 -> 15/12167},  {207.0 -> 12/12167},  {207.12 -> 12/12167},  {207.36 -> 4/12167},  {207.36 -> 8/12167},  {207.48 -> 18/12167},  {207.6 -> 6/12167},  {207.72 -> 12/12167},  {207.84 -> 6/12167},  {207.96 -> 4/12167},  {207.96 -> 2/12167},  {208.32 -> 18/12167},  {208.44 -> 6/12167},  {208.56 -> 12/12167},  {208.68 -> 6/12167},  {208.8 -> 2/12167},  {208.8 -> 25/12167},  {208.92 -> 4/12167},  {208.92 -> 8/12167},  {209.04 -> 4/12167},  {209.04 -> 5/12167},  {209.16 -> 9/12167},  {209.4 -> 12/12167},  {209.4 -> 12/12167},  {209.52 -> 6/12167},  {209.52 -> 3/12167},  {209.64 -> 12/12167},  {209.64 -> 6/12167},  {209.76 -> 4/12167},  {209.76 -> 5/12167},  {209.88 -> 6/12167},  {210.24 -> 4/12167},  {210.24 -> 14/12167},  {210.36 -> 3/12167},  {210.48 -> 6/12167},  {210.96 -> 4/12167},  {210.96 -> 5/12167},  {211.08 -> 7/12167},  {211.08 -> 8/12167},  {211.2 -> 2/12167},  {211.2 -> 4/12167},  {211.56 -> 6/12167},  {211.68 -> 12/12167},  {211.8 -> 6/12167},  {211.92 -> 6/12167},  {212.04 -> 2/12167},  {212.04 -> 4/12167},  {212.16 -> 3/12167},  {212.28 -> 1/12167},  {212.28 -> 2/12167},  {212.4 -> 4/12167},  {212.4 -> 2/12167},  {212.52 -> 6/12167},  {212.52 -> 6/12167},  {212.64 -> 6/12167},  {212.76 -> 8/12167},  {212.76 -> 4/12167},  {212.88 -> 26/12167},  {212.88 -> 4/12167},  {213.0 -> 6/12167},  {213.12 -> 2/12167},  {213.12 -> 4/12167},  {213.24 -> 6/12167},  {213.36 -> 9/12167},  {213.6 -> 8/12167},  {213.6 -> 10/12167},  {213.72 -> 6/12167},  {213.72 -> 8/12167},  {213.72 -> 4/12167},  {213.84 -> 9/12167},  {213.96 -> 6/12167},  {214.08 -> 1/12167},  {214.08 -> 2/12167},  {214.44 -> 16/12167},  {214.44 -> 2/12167},  {214.56 -> 12/12167},  {214.68 -> 6/12167},  {214.8 -> 6/12167},  {214.8 -> 6/12167},  {214.92 -> 2/12167},  {214.92 -> 4/12167},  {215.04 -> 8/12167},  {215.04 -> 16/12167},  {215.16 -> 19/12167},  {215.16 -> 5/12167},  {215.28 -> 8/12167},  {215.28 -> 4/12167},  {215.52 -> 12/12167},  {215.64 -> 4/12167},  {215.64 -> 2/12167},  {215.76 -> 30/12167},  {215.88 -> 24/12167},  {216.0 -> 2/12167},  {216.0 -> 12/12167},  {216.0 -> 4/12167},  {216.12 -> 18/12167},  {216.24 -> 9/12167},  {216.48 -> 12/12167},  {216.6 -> 10/12167},  {216.6 -> 8/12167},  {216.72 -> 3/12167},  {216.84 -> 12/12167},  {216.96 -> 3/12167},  {217.32 -> 12/12167},  {217.56 -> 6/12167},  {217.92 -> 2/12167},  {217.92 -> 4/12167},  {218.04 -> 6/12167},  {218.16 -> 6/12167},  {218.28 -> 4/12167},  {218.28 -> 2/12167},  {218.4 -> 4/12167},  {218.4 -> 2/12167},  {218.52 -> 6/12167},  {218.52 -> 6/12167},  {218.64 -> 6/12167},  {218.76 -> 6/12167},  {218.88 -> 6/12167},  {219.12 -> 15/12167},  {219.24 -> 4/12167},  {219.24 -> 20/12167},  {219.36 -> 6/12167},  {219.36 -> 18/12167},  {219.48 -> 4/12167},  {219.48 -> 2/12167},  {219.6 -> 6/12167},  {219.72 -> 1/12167},  {219.72 -> 2/12167},  {220.08 -> 4/12167},  {220.08 -> 11/12167},  {220.2 -> 6/12167},  {220.2 -> 3/12167},  {220.32 -> 6/12167},  {220.56 -> 18/12167},  {220.68 -> 6/12167},  {220.8 -> 6/12167},  {221.28 -> 4/12167},  {221.28 -> 2/12167},  {221.4 -> 18/12167},  {221.4 -> 24/12167},  {221.52 -> 2/12167},  {221.52 -> 4/12167},  {221.64 -> 24/12167},  {221.88 -> 9/12167},  {222.0 -> 24/12167},  {222.12 -> 6/12167},  {222.12 -> 12/12167},  {222.24 -> 4/12167},  {222.24 -> 14/12167},  {222.36 -> 9/12167},  {222.48 -> 6/12167},  {222.84 -> 4/12167},  {222.84 -> 14/12167},  {222.96 -> 4/12167},  {222.96 -> 14/12167},  {223.08 -> 6/12167},  {223.2 -> 6/12167},  {223.56 -> 6/12167},  {223.68 -> 6/12167},  {223.8 -> 3/12167},  {224.16 -> 6/12167},  {224.28 -> 2/12167},  {224.28 -> 14/12167},  {224.28 -> 2/12167},  {224.64 -> 6/12167},  {224.76 -> 16/12167},  {224.76 -> 2/12167},  {224.88 -> 13/12167},  {224.88 -> 2/12167},  {225.0 -> 2/12167},  {225.0 -> 5/12167},  {225.0 -> 2/12167},  {225.12 -> 6/12167},  {225.36 -> 2/12167},  {225.36 -> 4/12167},  {225.48 -> 10/12167},  {225.48 -> 20/12167},  {225.6 -> 4/12167},  {225.6 -> 20/12167},  {225.6 -> 18/12167},  {225.72 -> 24/12167},  {225.72 -> 6/12167},  {225.84 -> 6/12167},  {225.84 -> 6/12167},  {225.96 -> 6/12167},  {226.2 -> 3/12167},  {226.32 -> 8/12167},  {226.32 -> 4/12167},  {226.44 -> 8/12167},  {226.44 -> 4/12167},  {226.56 -> 6/12167},  {226.68 -> 6/12167},  {227.04 -> 2/12167},  {227.04 -> 4/12167},  {227.16 -> 6/12167},  {227.64 -> 4/12167},  {227.64 -> 2/12167},  {227.76 -> 12/12167},  {227.76 -> 3/12167},  {227.88 -> 18/12167},  {228.12 -> 9/12167},  {228.24 -> 2/12167},  {228.24 -> 4/12167},  {228.36 -> 10/12167},  {228.36 -> 11/12167},  {228.48 -> 6/12167},  {228.48 -> 6/12167},  {228.6 -> 4/12167},  {228.6 -> 8/12167},  {228.72 -> 5/12167},  {228.72 -> 4/12167},  {228.84 -> 6/12167},  {228.84 -> 12/12167},  {229.08 -> 2/12167},  {229.08 -> 10/12167},  {229.2 -> 12/12167},  {229.2 -> 6/12167},  {229.32 -> 12/12167},  {229.56 -> 33/12167},  {229.68 -> 12/12167},  {229.8 -> 12/12167},  {229.92 -> 6/12167},  {229.92 -> 6/12167},  {230.04 -> 6/12167},  {230.04 -> 12/12167},  {230.28 -> 2/12167},  {230.28 -> 7/12167},  {230.4 -> 8/12167},  {230.4 -> 4/12167},  {230.52 -> 4/12167},  {230.52 -> 2/12167},  {230.64 -> 18/12167},  {230.76 -> 6/12167},  {230.88 -> 3/12167},  {231.24 -> 2/12167},  {231.24 -> 13/12167},  {231.36 -> 12/12167},  {231.48 -> 6/12167},  {231.6 -> 2/12167},  {231.6 -> 1/12167},  {231.72 -> 7/12167},  {231.72 -> 2/12167},  {231.84 -> 12/12167},  {231.96 -> 3/12167},  {231.96 -> 12/12167},  {232.08 -> 6/12167},  {232.08 -> 6/12167},  {232.68 -> 6/12167},  {232.8 -> 12/12167},  {233.28 -> 4/12167},  {233.28 -> 2/12167},  {233.4 -> 2/12167},  {233.4 -> 8/12167},  {233.4 -> 2/12167},  {233.88 -> 12/12167},  {234.0 -> 12/12167},  {234.12 -> 6/12167},  {234.24 -> 3/12167},  {234.6 -> 2/12167},  {234.6 -> 4/12167},  {234.72 -> 7/12167},  {234.72 -> 2/12167},  {234.84 -> 6/12167},  {235.08 -> 12/12167},  {235.32 -> 16/12167},  {235.32 -> 2/12167},  {235.44 -> 10/12167},  {235.44 -> 2/12167},  {235.56 -> 12/12167},  {235.92 -> 12/12167},  {236.04 -> 3/12167},  {236.16 -> 8/12167},  {236.16 -> 7/12167},  {236.28 -> 1/12167},  {236.28 -> 2/12167},  {236.4 -> 3/12167},  {236.76 -> 6/12167},  {236.88 -> 18/12167},  {237.12 -> 3/12167},  {237.24 -> 6/12167},  {237.36 -> 6/12167},  {237.36 -> 6/12167},  {237.48 -> 2/12167},  {237.48 -> 4/12167},  {237.6 -> 2/12167},  {237.6 -> 4/12167},  {237.72 -> 12/12167},  {237.84 -> 4/12167},  {237.84 -> 2/12167},  {237.96 -> 6/12167},  {238.08 -> 8/12167},  {238.08 -> 7/12167},  {238.2 -> 8/12167},  {238.2 -> 7/12167},  {238.32 -> 10/12167},  {238.32 -> 2/12167},  {238.44 -> 12/12167},  {238.68 -> 12/12167},  {238.8 -> 4/12167},  {238.8 -> 11/12167},  {238.92 -> 2/12167},  {238.92 -> 10/12167},  {239.04 -> 12/12167},  {239.04 -> 3/12167},  {239.16 -> 3/12167},  {239.16 -> 3/12167},  {239.4 -> 2/12167},  {239.4 -> 4/12167},  {239.76 -> 6/12167},  {239.76 -> 6/12167},  {239.88 -> 4/12167},  {239.88 -> 2/12167},  {240.24 -> 2/12167},  {240.24 -> 4/12167},  {240.36 -> 9/12167},  {240.48 -> 6/12167},  {240.6 -> 2/12167},  {240.6 -> 1/12167},  {240.72 -> 1/12167},  {240.72 -> 2/12167},  {240.96 -> 4/12167},  {240.96 -> 2/12167},  {241.08 -> 6/12167},  {241.08 -> 12/12167},  {241.2 -> 6/12167},  {241.32 -> 6/12167},  {241.44 -> 2/12167},  {241.44 -> 7/12167},  {241.56 -> 12/12167},  {241.8 -> 15/12167},  {241.92 -> 6/12167},  {242.16 -> 4/12167},  {242.16 -> 8/12167},  {242.28 -> 8/12167},  {242.28 -> 12/12167},  {242.28 -> 4/12167},  {242.4 -> 10/12167},  {242.4 -> 8/12167},  {242.52 -> 10/12167},  {242.52 -> 2/12167},  {242.64 -> 12/12167},  {242.88 -> 6/12167},  {243.12 -> 18/12167},  {243.24 -> 9/12167},  {243.36 -> 4/12167},  {243.36 -> 14/12167},  {243.6 -> 5/12167},  {243.6 -> 4/12167},  {243.72 -> 4/12167},  {243.72 -> 2/12167},  {243.84 -> 10/12167},  {243.84 -> 2/12167},  {243.96 -> 6/12167},  {244.08 -> 6/12167},  {244.2 -> 6/12167},  {244.32 -> 2/12167},  {244.32 -> 4/12167},  {244.44 -> 12/12167},  {244.56 -> 12/12167},  {244.68 -> 3/12167},  {244.8 -> 6/12167},  {245.04 -> 4/12167},  {245.04 -> 20/12167},  {245.16 -> 4/12167},  {245.16 -> 14/12167},  {245.28 -> 2/12167},  {245.28 -> 8/12167},  {245.28 -> 2/12167},  {245.4 -> 6/12167},  {245.4 -> 6/12167},  {245.52 -> 6/12167},  {245.76 -> 3/12167},  {245.88 -> 24/12167},  {246.0 -> 4/12167},  {246.0 -> 2/12167},  {246.12 -> 6/12167},  {246.6 -> 2/12167},  {246.6 -> 4/12167},  {246.72 -> 6/12167},  {246.84 -> 6/12167},  {247.32 -> 6/12167},  {247.44 -> 6/12167},  {247.56 -> 6/12167},  {247.68 -> 2/12167},  {247.68 -> 10/12167},  {247.8 -> 4/12167},  {247.8 -> 2/12167},  {247.92 -> 2/12167},  {247.92 -> 10/12167},  {248.4 -> 4/12167},  {248.4 -> 8/12167},  {248.52 -> 16/12167},  {248.52 -> 14/12167},  {248.64 -> 12/12167},  {248.64 -> 6/12167},  {248.76 -> 10/12167},  {248.76 -> 2/12167},  {248.88 -> 6/12167},  {249.12 -> 3/12167},  {249.24 -> 3/12167},  {249.36 -> 2/12167},  {249.36 -> 4/12167},  {249.84 -> 4/12167},  {249.84 -> 2/12167},  {249.96 -> 6/12167},  {249.96 -> 4/12167},  {249.96 -> 2/12167},  {250.08 -> 8/12167},  {250.08 -> 10/12167},  {250.2 -> 6/12167},  {250.56 -> 6/12167},  {250.68 -> 12/12167},  {250.8 -> 6/12167},  {250.8 -> 18/12167},  {250.92 -> 2/12167},  {250.92 -> 16/12167},  {251.04 -> 12/12167},  {251.28 -> 4/12167},  {251.28 -> 2/12167},  {251.4 -> 16/12167},  {251.4 -> 5/12167},  {251.64 -> 10/12167},  {251.64 -> 2/12167},  {251.76 -> 6/12167},  {251.76 -> 3/12167},  {252.0 -> 6/12167},  {252.12 -> 12/12167},  {252.24 -> 2/12167},  {252.24 -> 16/12167},  {252.36 -> 16/12167},  {252.48 -> 6/12167},  {252.48 -> 6/12167},  {252.84 -> 2/12167},  {252.84 -> 1/12167},  {252.96 -> 2/12167},  {252.96 -> 4/12167},  {253.08 -> 12/12167},  {253.2 -> 3/12167},  {253.56 -> 4/12167},  {253.56 -> 2/12167},  {253.68 -> 6/12167},  {253.8 -> 9/12167},  {254.04 -> 9/12167},  {254.16 -> 10/12167},  {254.16 -> 8/12167},  {254.28 -> 10/12167},  {254.28 -> 2/12167},  {254.52 -> 6/12167},  {254.88 -> 12/12167},  {255.12 -> 3/12167},  {255.48 -> 6/12167},  {255.6 -> 2/12167},  {255.6 -> 4/12167},  {255.6 -> 6/12167},  {255.72 -> 4/12167},  {255.72 -> 2/12167},  {255.84 -> 3/12167},  {256.32 -> 2/12167},  {256.32 -> 4/12167},  {256.44 -> 15/12167},  {256.56 -> 6/12167},  {257.04 -> 12/12167},  {257.28 -> 2/12167},  {257.28 -> 1/12167},  {257.64 -> 7/12167},  {257.64 -> 2/12167},  {257.76 -> 12/12167},  {257.88 -> 24/12167},  {258.12 -> 6/12167},  {258.24 -> 6/12167},  {258.36 -> 6/12167},  {258.6 -> 18/12167},  {258.72 -> 3/12167},  {258.84 -> 6/12167},  {259.08 -> 6/12167},  {259.32 -> 6/12167},  {259.44 -> 6/12167},  {259.56 -> 12/12167},  {259.68 -> 2/12167},  {259.68 -> 4/12167},  {259.92 -> 12/12167},  {260.04 -> 2/12167},  {260.04 -> 4/12167},  {260.16 -> 6/12167},  {260.16 -> 3/12167},  {260.4 -> 12/12167},  {260.52 -> 14/12167},  {260.52 -> 4/12167},  {260.64 -> 12/12167},  {261.12 -> 6/12167},  {261.36 -> 3/12167},  {261.96 -> 12/12167},  {262.08 -> 4/12167},  {262.08 -> 5/12167},  {262.2 -> 1/12167},  {262.2 -> 2/12167},  {262.56 -> 6/12167},  {262.68 -> 12/12167},  {262.8 -> 4/12167},  {262.8 -> 8/12167},  {262.92 -> 6/12167},  {263.16 -> 2/12167},  {263.16 -> 4/12167},  {263.28 -> 6/12167},  {263.4 -> 4/12167},  {263.4 -> 2/12167},  {263.52 -> 6/12167},  {263.64 -> 6/12167},  {263.88 -> 6/12167},  {264.0 -> 18/12167},  {264.12 -> 6/12167},  {264.36 -> 15/12167},  {264.48 -> 4/12167},  {264.48 -> 8/12167},  {264.6 -> 9/12167},  {264.72 -> 4/12167},  {264.72 -> 2/12167},  {265.08 -> 5/12167},  {265.08 -> 4/12167},  {265.2 -> 12/12167},  {265.32 -> 12/12167},  {265.44 -> 12/12167},  {265.56 -> 4/12167},  {265.56 -> 8/12167},  {265.68 -> 3/12167},  {265.8 -> 3/12167},  {265.8 -> 6/12167},  {265.92 -> 6/12167},  {266.04 -> 12/12167},  {266.16 -> 11/12167},  {266.16 -> 4/12167},  {266.28 -> 6/12167},  {266.52 -> 6/12167},  {266.64 -> 4/12167},  {266.64 -> 2/12167},  {266.76 -> 24/12167},  {266.88 -> 27/12167},  {267.12 -> 6/12167},  {267.24 -> 3/12167},  {267.36 -> 6/12167},  {267.48 -> 12/12167},  {267.6 -> 18/12167},  {267.72 -> 6/12167},  {267.84 -> 6/12167},  {268.08 -> 6/12167},  {268.2 -> 6/12167},  {268.68 -> 6/12167},  {268.8 -> 2/12167},  {268.8 -> 4/12167},  {269.04 -> 6/12167},  {269.52 -> 4/12167},  {269.52 -> 2/12167},  {269.64 -> 12/12167},  {270.12 -> 6/12167},  {270.36 -> 6/12167},  {270.48 -> 6/12167},  {270.84 -> 6/12167},  {270.96 -> 6/12167},  {270.96 -> 12/12167},  {271.08 -> 2/12167},  {271.08 -> 4/12167},  {271.2 -> 6/12167},  {271.56 -> 6/12167},  {272.16 -> 6/12167},  {272.28 -> 8/12167},  {272.28 -> 4/12167},  {272.4 -> 12/12167},  {272.64 -> 6/12167},  {272.88 -> 6/12167},  {273.0 -> 12/12167},  {273.12 -> 24/12167},  {273.36 -> 9/12167},  {273.72 -> 9/12167},  {273.84 -> 6/12167},  {273.84 -> 6/12167},  {273.96 -> 3/12167},  {274.08 -> 3/12167},  {274.2 -> 6/12167},  {274.56 -> 12/12167},  {274.68 -> 6/12167},  {275.04 -> 18/12167},  {275.16 -> 8/12167},  {275.16 -> 10/12167},  {275.28 -> 22/12167},  {275.28 -> 2/12167},  {275.4 -> 12/12167},  {275.88 -> 12/12167},  {276.0 -> 12/12167},  {276.6 -> 6/12167},  {276.72 -> 6/12167},  {277.08 -> 3/12167},  {277.2 -> 2/12167},  {277.2 -> 4/12167},  {277.32 -> 3/12167},  {277.44 -> 6/12167},  {278.04 -> 3/12167},  {278.4 -> 4/12167},  {278.4 -> 2/12167},  {278.52 -> 12/12167},  {278.64 -> 10/12167},  {278.64 -> 2/12167},  {278.76 -> 12/12167},  {278.88 -> 6/12167},  {279.12 -> 3/12167},  {279.36 -> 13/12167},  {279.48 -> 15/12167},  {279.6 -> 12/12167},  {279.84 -> 12/12167},  {279.96 -> 4/12167},  {279.96 -> 2/12167},  {280.32 -> 2/12167},  {280.32 -> 4/12167},  {280.56 -> 3/12167},  {280.68 -> 18/12167},  {280.8 -> 6/12167},  {280.8 -> 18/12167},  {280.92 -> 12/12167},  {281.04 -> 6/12167},  {281.4 -> 3/12167},  {281.52 -> 4/12167},  {281.52 -> 2/12167},  {281.64 -> 9/12167},  {282.12 -> 6/12167},  {282.24 -> 12/12167},  {282.36 -> 12/12167},  {282.72 -> 2/12167},  {282.72 -> 4/12167},  {283.08 -> 2/12167},  {283.08 -> 10/12167},  {283.32 -> 6/12167},  {283.56 -> 12/12167},  {283.8 -> 6/12167},  {284.16 -> 4/12167},  {284.16 -> 8/12167},  {284.4 -> 12/12167},  {284.52 -> 3/12167},  {284.76 -> 3/12167},  {284.88 -> 15/12167},  {285.0 -> 15/12167},  {285.12 -> 6/12167},  {285.6 -> 6/12167},  {285.72 -> 2/12167},  {285.72 -> 10/12167},  {285.84 -> 2/12167},  {285.84 -> 4/12167},  {286.44 -> 6/12167},  {286.8 -> 6/12167},  {287.16 -> 2/12167},  {287.16 -> 4/12167},  {287.28 -> 6/12167},  {287.64 -> 8/12167},  {287.64 -> 4/12167},  {287.88 -> 18/12167},  {288.0 -> 6/12167},  {288.6 -> 12/12167},  {288.72 -> 6/12167},  {288.84 -> 9/12167},  {288.96 -> 8/12167},  {288.96 -> 4/12167},  {289.08 -> 3/12167},  {289.32 -> 4/12167},  {289.32 -> 2/12167},  {289.44 -> 6/12167},  {289.68 -> 18/12167},  {289.8 -> 4/12167},  {289.8 -> 8/12167},  {289.92 -> 12/12167},  {290.04 -> 6/12167},  {290.4 -> 3/12167},  {290.52 -> 14/12167},  {290.52 -> 4/12167},  {290.76 -> 6/12167},  {291.36 -> 3/12167},  {292.08 -> 3/12167},  {293.04 -> 2/12167},  {293.04 -> 4/12167},  {293.16 -> 4/12167},  {293.16 -> 2/12167},  {293.88 -> 12/12167},  {294.0 -> 12/12167},  {294.12 -> 6/12167},  {294.24 -> 6/12167},  {294.36 -> 9/12167},  {294.48 -> 2/12167},  {294.48 -> 4/12167},  {295.08 -> 6/12167},  {295.2 -> 12/12167},  {295.32 -> 18/12167},  {295.44 -> 12/12167},  {295.56 -> 2/12167},  {295.56 -> 4/12167},  {295.8 -> 3/12167},  {295.92 -> 1/12167},  {296.16 -> 4/12167},  {296.16 -> 11/12167},  {296.28 -> 3/12167},  {296.4 -> 12/12167},  {296.76 -> 6/12167},  {296.88 -> 6/12167},  {297.12 -> 6/12167},  {297.36 -> 3/12167},  {297.48 -> 2/12167},  {297.48 -> 4/12167},  {297.6 -> 1/12167},  {297.6 -> 20/12167},  {297.84 -> 6/12167},  {297.96 -> 3/12167},  {298.08 -> 6/12167},  {298.2 -> 3/12167},  {299.04 -> 2/12167},  {299.04 -> 4/12167},  {299.52 -> 6/12167},  {299.64 -> 6/12167},  {300.84 -> 6/12167},  {300.96 -> 6/12167},  {300.96 -> 6/12167},  {301.44 -> 3/12167},  {301.56 -> 12/12167},  {301.68 -> 6/12167},  {301.68 -> 15/12167},  {301.8 -> 4/12167},  {301.8 -> 8/12167},  {301.92 -> 6/12167},  {302.04 -> 6/12167},  {302.4 -> 11/12167},  {302.4 -> 4/12167},  {302.52 -> 12/12167},  {302.64 -> 6/12167},  {302.76 -> 6/12167},  {303.12 -> 9/12167},  {303.36 -> 3/12167},  {304.08 -> 6/12167},  {304.32 -> 3/12167},  {304.44 -> 6/12167},  {304.56 -> 2/12167},  {304.56 -> 1/12167},  {304.8 -> 3/12167},  {305.04 -> 2/12167},  {305.04 -> 4/12167},  {305.16 -> 6/12167},  {305.28 -> 6/12167},  {306.0 -> 6/12167},  {307.44 -> 4/12167},  {307.44 -> 2/12167},  {307.68 -> 3/12167},  {307.8 -> 4/12167},  {307.8 -> 5/12167},  {307.92 -> 7/12167},  {307.92 -> 2/12167},  {308.04 -> 5/12167},  {308.04 -> 4/12167},  {308.16 -> 4/12167},  {308.16 -> 2/12167},  {308.64 -> 6/12167},  {308.88 -> 3/12167},  {309.0 -> 3/12167},  {309.36 -> 6/12167},  {309.48 -> 2/12167},  {309.48 -> 4/12167},  {309.6 -> 6/12167},  {309.84 -> 4/12167},  {309.84 -> 8/12167},  {309.96 -> 3/12167},  {310.08 -> 10/12167},  {310.08 -> 2/12167},  {310.2 -> 3/12167},  {310.32 -> 1/12167},  {310.32 -> 2/12167},  {310.68 -> 18/12167},  {310.8 -> 2/12167},  {310.8 -> 4/12167},  {310.92 -> 4/12167},  {310.92 -> 8/12167},  {311.16 -> 3/12167},  {311.4 -> 1/12167},  {311.4 -> 2/12167},  {311.52 -> 12/12167},  {311.64 -> 9/12167},  {312.12 -> 6/12167},  {312.24 -> 6/12167},  {313.08 -> 2/12167},  {313.08 -> 4/12167},  {313.56 -> 6/12167},  {314.16 -> 2/12167},  {314.16 -> 7/12167},  {314.28 -> 3/12167},  {315.0 -> 6/12167},  {315.36 -> 1/12167},  {316.08 -> 3/12167},  {316.8 -> 3/12167},  {317.16 -> 6/12167},  {317.28 -> 6/12167},  {317.52 -> 1/12167},  {317.64 -> 4/12167},  {317.64 -> 2/12167},  {317.88 -> 6/12167},  {318.0 -> 6/12167},  {318.36 -> 6/12167},  {318.48 -> 2/12167},  {318.48 -> 4/12167},  {319.2 -> 4/12167},  {319.2 -> 2/12167},  {319.32 -> 6/12167},  {319.68 -> 6/12167},  {319.8 -> 2/12167},  {319.8 -> 4/12167},  {320.04 -> 2/12167},  {320.04 -> 4/12167},  {320.52 -> 4/12167},  {320.52 -> 2/12167},  {320.64 -> 12/12167},  {320.76 -> 6/12167},  {321.36 -> 6/12167},  {322.08 -> 2/12167},  {322.08 -> 4/12167},  {323.64 -> 3/12167},  {323.76 -> 6/12167},  {323.88 -> 9/12167},  {324.0 -> 6/12167},  {324.12 -> 6/12167},  {324.48 -> 6/12167},  {324.6 -> 4/12167},  {324.6 -> 8/12167},  {324.72 -> 2/12167},  {324.72 -> 7/12167},  {324.84 -> 4/12167},  {324.84 -> 8/12167},  {324.96 -> 3/12167},  {325.2 -> 3/12167},  {325.32 -> 7/12167},  {325.32 -> 2/12167},  {326.16 -> 10/12167},  {326.16 -> 14/12167},  {326.28 -> 6/12167},  {326.4 -> 6/12167},  {326.88 -> 6/12167},  {327.0 -> 12/12167},  {327.6 -> 6/12167},  {327.72 -> 6/12167},  {330.24 -> 6/12167},  {330.36 -> 12/12167},  {330.48 -> 2/12167},  {330.48 -> 4/12167},  {331.08 -> 6/12167},  {331.2 -> 2/12167},  {331.2 -> 4/12167},  {331.68 -> 6/12167},  {331.8 -> 2/12167},  {331.8 -> 4/12167},  {332.4 -> 4/12167},  {332.4 -> 2/12167},  {332.52 -> 6/12167},  {332.64 -> 6/12167},  {333.36 -> 6/12167},  {334.08 -> 2/12167},  {334.08 -> 4/12167},  {334.32 -> 8/12167},  {334.32 -> 4/12167},  {334.44 -> 6/12167},  {334.8 -> 6/12167},  {335.16 -> 8/12167},  {335.16 -> 4/12167},  {335.4 -> 6/12167},  {338.16 -> 3/12167},  {338.28 -> 3/12167},  {338.88 -> 6/12167},  {339.0 -> 6/12167},  {339.6 -> 3/12167},  {339.72 -> 3/12167},  {339.84 -> 2/12167},  {339.84 -> 4/12167},  {339.96 -> 3/12167},  {340.08 -> 4/12167},  {340.08 -> 2/12167},  {340.2 -> 3/12167},  {340.68 -> 12/12167},  {340.92 -> 2/12167},  {340.92 -> 4/12167},  {341.64 -> 3/12167},  {342.84 -> 2/12167},  {342.84 -> 4/12167},  {342.96 -> 2/12167},  {342.96 -> 4/12167},  {343.44 -> 6/12167},  {343.56 -> 6/12167},  {346.32 -> 4/12167},  {346.32 -> 2/12167},  {346.92 -> 6/12167},  {347.04 -> 8/12167},  {347.04 -> 4/12167},  {347.16 -> 8/12167},  {347.16 -> 4/12167},  {347.4 -> 6/12167},  {347.88 -> 12/12167},  {348.12 -> 6/12167},  {348.96 -> 3/12167},  {349.08 -> 4/12167},  {349.08 -> 2/12167},  {349.2 -> 3/12167},  {349.8 -> 6/12167},  {349.92 -> 4/12167},  {349.92 -> 2/12167},  {350.64 -> 6/12167},  {353.16 -> 4/12167},  {353.16 -> 2/12167},  {353.28 -> 10/12167},  {353.28 -> 2/12167},  {353.4 -> 6/12167},  {354.48 -> 3/12167},  {354.6 -> 2/12167},  {354.6 -> 4/12167},  {354.72 -> 1/12167},  {354.72 -> 2/12167},  {355.44 -> 6/12167},  {355.56 -> 6/12167},  {356.16 -> 4/12167},  {356.16 -> 2/12167},  {356.88 -> 6/12167},  {357.0 -> 6/12167},  {359.64 -> 3/12167},  {360.96 -> 3/12167},  {361.08 -> 4/12167},  {361.08 -> 2/12167},  {361.2 -> 3/12167},  {361.68 -> 3/12167},  {361.8 -> 4/12167},  {361.8 -> 2/12167},  {361.92 -> 3/12167},  {362.64 -> 6/12167},  {363.36 -> 6/12167},  {364.68 -> 3/12167},  {365.16 -> 4/12167},  {365.16 -> 2/12167},  {369.12 -> 6/12167},  {369.24 -> 6/12167},  {369.96 -> 4/12167},  {369.96 -> 8/12167},  {370.08 -> 4/12167},  {370.08 -> 8/12167},  {370.2 -> 4/12167},  {370.2 -> 2/12167},  {370.32 -> 6/12167},  {370.68 -> 3/12167},  {371.64 -> 6/12167},  {372.36 -> 6/12167},  {375.72 -> 3/12167},  {377.16 -> 4/12167},  {377.16 -> 2/12167},  {377.88 -> 6/12167},  {379.8 -> 3/12167},  {383.64 -> 3/12167},  {383.76 -> 1/12167},  {383.88 -> 3/12167},  {384.0 -> 3/12167},  {384.12 -> 1/12167},  {384.36 -> 6/12167},  {385.08 -> 3/12167},  {385.44 -> 4/12167},  {385.44 -> 2/12167},  {385.56 -> 2/12167},  {385.56 -> 4/12167},  {388.32 -> 1/12167},  {388.32 -> 2/12167},  {388.92 -> 3/12167},  {392.4 -> 2/12167},  {392.4 -> 1/12167},  {394.44 -> 4/12167},  {394.44 -> 2/12167},  {394.56 -> 2/12167},  {394.56 -> 4/12167},  {395.28 -> 2/12167},  {395.28 -> 1/12167},  {398.64 -> 3/12167},  {398.76 -> 3/12167},  {399.96 -> 2/12167},  {399.96 -> 4/12167},  {400.08 -> 2/12167},  {400.08 -> 4/12167},  {400.92 -> 3/12167},  {402.36 -> 3/12167},  {406.44 -> 4/12167},  {406.44 -> 2/12167},  {406.56 -> 2/12167},  {406.56 -> 4/12167},  {407.16 -> 4/12167},  {407.16 -> 2/12167},  {407.28 -> 6/12167},  {414.6 -> 3/12167},  {415.44 -> 2/12167},  {415.44 -> 4/12167},  {415.68 -> 3/12167},  {429.24 -> 3/12167},  {429.36 -> 6/12167},  {429.48 -> 3/12167},  {430.92 -> 2/12167},  {430.92 -> 1/12167},  {439.92 -> 2/12167},  {439.92 -> 1/12167},  {445.44 -> 1/12167},  {445.44 -> 2/12167},  {451.92 -> 2/12167},  {451.92 -> 1/12167},  {452.64 -> 3/12167},  {474.72 -> 3/12167},  {474.84 -> 3/12167},  {520.2 -> 1/12167}

In [46]:
PlotDist(Sys3)



In [47]:
PlotDist(CDF(Sys3))



In [48]:
U12 = UniformRV(1,2)

In [49]:
Un2n1 = UniformRV(-2,-1)

In [50]:
U12 + U12


continuous pdf
for 2 <= x <= 3
---------------------------
       ⎛ x⎞      
1.0⋅log⎝ℯ ⎠ - 2.0
---------------------------
 
 
for 3 <= x <= 4
---------------------------
            ⎛ x⎞      
- - -1.0⋅log⎝ℯ ⎠ + 4.0
---------------------------
Out[50]:
None

In [51]:
Un2n1 + Un2n1


continuous pdf
for -4 <= x <= -3
---------------------------
       ⎛ x⎞      
1.0⋅log⎝ℯ ⎠ + 4.0
---------------------------
 
 
for -3 <= x <= -2
---------------------------
   ⎛    -1.0⎞      
   ⎜⎛ x⎞    ⎟      
log⎝⎝ℯ ⎠    ⎠ - 2.0
---------------------------
Out[51]:
None

In [52]:
U12+Un2n1


continuous pdf
for -1 <= x <= 0
---------------------------
       ⎛ x⎞      
1.0⋅log⎝ℯ ⎠ + 1.0
---------------------------
 
 
for 0 <= x <= 1
---------------------------
            ⎛ x⎞      
- - -1.0⋅log⎝ℯ ⎠ + 1.0
---------------------------
Out[52]:
None

In [53]:
Un2n1+U12


continuous pdf
for -1 <= x <= 0
---------------------------
       ⎛ x⎞      
1.0⋅log⎝ℯ ⎠ + 1.0
---------------------------
 
 
for 0 <= x <= 1
---------------------------
            ⎛ x⎞      
- - -1.0⋅log⎝ℯ ⎠ + 1.0
---------------------------
Out[53]:
None

In [54]:
U12*U12


continuous pdf
for 1 <= x <= 2
---------------------------
1.0⋅log(x)
---------------------------
 
 
for 2 <= x <= 4
---------------------------
   ⎛ 2.0  -1.0⎞
log⎝2   ⋅x    ⎠
---------------------------
Out[54]:
None

In [55]:
Un2n1 * Un2n1


continuous pdf
for 1 <= x <= 2
---------------------------
1.0⋅log(x)
---------------------------
 
 
for 2 <= x <= 4
---------------------------
-- -1.0⋅log(x) + 2.0⋅log(2)
---------------------------
Out[55]:
None

In [56]:
U12 * Un2n1


continuous pdf
for -4 <= x <= -2
---------------------------
0
---------------------------
 
 
for -2 <= x <= -1
---------------------------
0
---------------------------
Out[56]:
None

In [57]:
Un2n1 * U12


continuous pdf
for -4 <= x <= -2
---------------------------
-- -1.0⋅log(-x) + 2.0⋅log(2)
---------------------------
 
 
for -2 <= x <= -1
---------------------------
1.0⋅log(-x)
---------------------------
Out[57]:
None

In [ ]: