In [1]:
import sys
import pandas as pd
import numpy as np
import difflib
import gzip
from scipy import stats
import time
from implementations import all_implementations
from random import randint
In [2]:
ARR_SIZE = 20000
SORT_TRIALS = 40
random_arrays = []
for i in range(SORT_TRIALS):
random_arrays.append(np.random.randint(0, ARR_SIZE, ARR_SIZE))
df_result = pd.DataFrame(np.nan, index=np.array(range(SORT_TRIALS)),columns = [fn.__name__ for fn in all_implementations])
df_result
Out[2]:
In [6]:
for sort in all_implementations:
for i in range(SORT_TRIALS):
st = time.time()
res = sort(random_arrays[i])
en = time.time()
df_result.iloc[i][sort.__name__]=en-st
df_result.to_csv('data.csv', index=False)
df_result
Out[6]:
In [ ]:
def main():
ARR_SIZE = 20000
SORT_TRIALS = 40
random_arrays = []
for i in range(SORT_TRIALS):
random_arrays.append(np.random.randint(0, ARR_SIZE, ARR_SIZE))
df_result = pd.DataFrame(np.nan, index=np.array(range(SORT_TRIALS)),columns = [fn.__name__ for fn in all_implementations])
for sort in all_implementations:
for i in range(SORT_TRIALS):
st = time.time()
res = sort(random_arrays[i])
en = time.time()
df_result.iloc[i][sort.__name__]=en-st
df_result.to_csv('data.csv', index=False)
if __name__ == '__main__':
main()