In [2]:
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv("C://Users//Koyel//Desktop/MieRobotAdvert.csv")
dataset.head()
Out[2]:
In [3]:
dataset.describe()
Out[3]:
In [4]:
dataset.columns
Out[4]:
In [5]:
import seaborn as sns
%matplotlib inline
sns.pairplot(dataset)
Out[5]:
In [6]:
sns.heatmap(dataset.corr())
Out[6]:
In [7]:
dataset.columns
Out[7]:
In [8]:
X = dataset[['Facebook', 'Twitter', 'Google']]
y = dataset['Hits']
In [9]:
from sklearn.model_selection import train_test_split
In [10]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
In [11]:
from sklearn.linear_model import LinearRegression
In [12]:
lm = LinearRegression()
In [13]:
lm.fit(X_train,y_train)
Out[13]:
In [14]:
print(lm.intercept_)
In [15]:
coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Calculated Coefficient'])
coeff_df
Out[15]:
In [17]:
predictions = lm.predict(X_test)
In [26]:
plt.ylabel("likes predicted")
plt.title("Likes predicated for MieRobot.com blogs",color='r')
plt.scatter(y_test,predictions)
Out[26]:
In [23]:
print (lm.score)
In [19]:
sns.distplot((y_test-predictions),bins=50);
In [20]:
from sklearn import metrics
print('MAE:', metrics.mean_absolute_error(y_test, predictions))
print('MSE:', metrics.mean_squared_error(y_test, predictions))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))
In [ ]: