In [1]:
%matplotlib inline
# import statements
import numpy as np
import matplotlib.pyplot as plt #for figures
from mpl_toolkits.basemap import Basemap #to render maps
import math
import json #to write dict with parameters
import GrowYourIC
from GrowYourIC import positions, geodyn, geodyn_trg, geodyn_static, plot_data, data
plt.rcParams['figure.figsize'] = (8.0, 3.0) #size of figures
cm = plt.cm.get_cmap('viridis')
cm2 = plt.cm.get_cmap('winter')
In [2]:
age_ic_dim = 1e9 #in years
rICB_dim = 1221. #in km
translation_velocity_dim = 4.e-10
time_translation = rICB_dim*1e3/translation_velocity_dim /(np.pi*1e7)
maxAge = 2.*time_translation/1e6
units = None #we give them already dimensionless parameters.
rICB = 1.
age_ic = 1.
omega = 0.
#omega_2_dim = 0.45 #degree/Myears
#omega_2 = omega_2_dim*np.pi/180*age_ic_dim*1e-6
#0.5*np.pi/200e6*age_ic_dim#0.5*np.pi #0. #0.5*np.pi/200e6*age_ic_dim# 0.#0.5*np.pi#0.#0.5*np.pi/200e6*age_ic_dim #0. #-0.5*np.pi # Rotation rates has to be in ]-np.pi, np.pi[
velocity_amplitude = translation_velocity_dim*age_ic_dim*np.pi*1e7/rICB_dim/1e3
velocity_center = [0., 100.]#center of the eastern hemisphere
center = [0,-80] #center of the western hemisphere
velocity = geodyn_trg.translation_velocity(velocity_center, velocity_amplitude)
exponent_growth = 0.1
proxy_type = "age"#"growth rate"
proxy_name = "age (Myears)" #growth rate (km/Myears)"
proxy_lim = [0, maxAge] #or None
print("=== Modele 1 ===")
print("The translation recycles the inner core material in {0:.2e} million years.".format(maxAge))
print("Translation velocity is {0:.2e} km/years, {1:.2}.".format(translation_velocity_dim*np.pi*1e7/1e3, velocity_amplitude))
print("Rotation rate is {0:.2e} degree per Myears, {1:.2e}.".format(omega, omega))
print("===")
geodynModel = geodyn_trg.TranslationGrowthRotation() #can do all the models presented in the paper
parameters = dict({'units': units,
'rICB': rICB,
'tau_ic':age_ic,
'vt': velocity,
'exponent_growth': exponent_growth,
'omega': omega,
'proxy_type': proxy_type})
geodynModel.set_parameters(parameters)
geodynModel.define_units()
In [3]:
## real data set
data_set = data.SeismicFromFile("../GrowYourIC/data/WD11.dat")
data_set.method = "bt_point"
proxy2 = geodyn.evaluate_proxy(data_set, geodynModel, proxy_type=proxy_type, verbose=False)
# random data set
data_set_random = data.RandomData(3000)
data_set_random.method = "bt_point"
proxy_random = geodyn.evaluate_proxy(data_set_random, geodynModel, proxy_type=proxy_type, verbose=False)
In [4]:
r, t, p = data_set_random.extract_rtp("bottom_turning_point")
dist = positions.angular_distance_to_point(t, p, *center)
## map
m, fig = plot_data.setting_map()
x, y = m(p, t)
sc = m.scatter(x, y, c=proxy_random,s=8, zorder=10, cmap=cm, edgecolors='none')
plt.title("Dataset: {},\n geodynamic model: {}".format(data_set_random.name, geodynModel.name))
cbar = plt.colorbar(sc)
cbar.set_label(proxy_name)
#fig.savefig(fig_name+data_set_random.shortname+"_map.pdf", bbox_inches='tight')
## phi and distance plots
fig, ax = plt.subplots(1,2, figsize=(8.0, 2.5))
sc1 = ax[0].scatter(p, proxy_random, c=abs(t),s=3, cmap=cm2, vmin =-0, vmax =90, linewidth=0)
phi = np.linspace(-180,180, 50)
ax[0].set_xlabel("longitude")
ax[0].set_ylabel(proxy_name)
if proxy_lim is not None:
ax[0].set_ylim(proxy_lim)
sc2 = ax[1].scatter(dist, proxy_random, c=abs(t), cmap=cm2, vmin=-0, vmax =90, s=3, linewidth=0)
ax[1].set_xlabel("angular distance to ({}, {})".format(*velocity_center))
phi = np.linspace(-90,90, 100)
if proxy_type == "age":
analytic_equator = np.maximum(2*np.sin((phi-10)*np.pi/180.)*rICB_dim*1e3/translation_velocity_dim /(np.pi*1e7)/1e6,0.)
ax[0].plot(phi,analytic_equator, 'r', linewidth=2)
analytic_equator = np.maximum(2*np.sin((-phi)*np.pi/180.)*rICB_dim*1e3/translation_velocity_dim /(np.pi*1e7)/1e6,0.)
ax[1].plot(90-phi,analytic_equator, 'r', linewidth=2)
ax[1].set_xlim([0,180])
ax[0].set_xlim([-180,180])
cbar = fig.colorbar(sc1)
cbar.set_label("longitude: abs(theta)")
if proxy_lim is not None:
ax[1].set_ylim(proxy_lim)
In [5]:
r, t, p = data_set.extract_rtp("bottom_turning_point")
dist = positions.angular_distance_to_point(t, p, *center)
## map
m, fig = plot_data.setting_map()
x, y = m(p, t)
sc = m.scatter(x, y, c=proxy2,s=8, zorder=10, cmap=cm, edgecolors='none')
plt.title("Dataset: {},\n geodynamic model: {}".format(data_set_random.name, geodynModel.name))
cbar = plt.colorbar(sc)
cbar.set_label(proxy_name)
#fig.savefig(fig_name+data_set_random.shortname+"_map.pdf", bbox_inches='tight')
## phi and distance plots
fig, ax = plt.subplots(1,2, figsize=(8.0, 2.5))
sc1 = ax[0].scatter(p, proxy2, c=abs(t),s=3, cmap=cm2, vmin =-0, vmax =90, linewidth=0)
phi = np.linspace(-180,180, 50)
ax[0].set_xlabel("longitude")
ax[0].set_ylabel(proxy_name)
if proxy_lim is not None:
ax[0].set_ylim(proxy_lim)
sc2 = ax[1].scatter(dist, proxy2, c=abs(t), cmap=cm2, vmin=-0, vmax =90, s=3, linewidth=0)
ax[1].set_xlabel("angular distance to ({}, {})".format(*velocity_center))
phi = np.linspace(-90,90, 100)
if proxy_type == "age":
analytic_equator = np.maximum(2*np.sin((phi-10)*np.pi/180.)*rICB_dim*1e3/translation_velocity_dim /(np.pi*1e7)/1e6,0.)
ax[0].plot(phi,analytic_equator, 'r', linewidth=2)
analytic_equator = np.maximum(2*np.sin((-phi)*np.pi/180.)*rICB_dim*1e3/translation_velocity_dim /(np.pi*1e7)/1e6,0.)
ax[1].plot(90-phi,analytic_equator, 'r', linewidth=2)
ax[1].set_xlim([0,180])
ax[0].set_xlim([-180,180])
cbar = fig.colorbar(sc1)
cbar.set_label("longitude: abs(theta)")
if proxy_lim is not None:
ax[1].set_ylim(proxy_lim)
In [ ]: