In [1]:
from sklearn.datasets import load_iris

In [2]:
iris  = load_iris()

In [5]:
print iris.feature_names


['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

In [6]:
print iris.target_names


['setosa' 'versicolor' 'virginica']

In [7]:
print iris.data[0]


[ 5.1  3.5  1.4  0.2]

In [8]:
print iris.data[149]


[ 5.9  3.   5.1  1.8]

In [9]:
print iris.target[0],iris.target[50],iris.target[149]


0 1 2

In [10]:
for i in range(len(iris.target)):
    print "Example %d: label %s, features %s" % (i,iris.target[i],iris.data[i])


Example 0: label 0, features [ 5.1  3.5  1.4  0.2]
Example 1: label 0, features [ 4.9  3.   1.4  0.2]
Example 2: label 0, features [ 4.7  3.2  1.3  0.2]
Example 3: label 0, features [ 4.6  3.1  1.5  0.2]
Example 4: label 0, features [ 5.   3.6  1.4  0.2]
Example 5: label 0, features [ 5.4  3.9  1.7  0.4]
Example 6: label 0, features [ 4.6  3.4  1.4  0.3]
Example 7: label 0, features [ 5.   3.4  1.5  0.2]
Example 8: label 0, features [ 4.4  2.9  1.4  0.2]
Example 9: label 0, features [ 4.9  3.1  1.5  0.1]
Example 10: label 0, features [ 5.4  3.7  1.5  0.2]
Example 11: label 0, features [ 4.8  3.4  1.6  0.2]
Example 12: label 0, features [ 4.8  3.   1.4  0.1]
Example 13: label 0, features [ 4.3  3.   1.1  0.1]
Example 14: label 0, features [ 5.8  4.   1.2  0.2]
Example 15: label 0, features [ 5.7  4.4  1.5  0.4]
Example 16: label 0, features [ 5.4  3.9  1.3  0.4]
Example 17: label 0, features [ 5.1  3.5  1.4  0.3]
Example 18: label 0, features [ 5.7  3.8  1.7  0.3]
Example 19: label 0, features [ 5.1  3.8  1.5  0.3]
Example 20: label 0, features [ 5.4  3.4  1.7  0.2]
Example 21: label 0, features [ 5.1  3.7  1.5  0.4]
Example 22: label 0, features [ 4.6  3.6  1.   0.2]
Example 23: label 0, features [ 5.1  3.3  1.7  0.5]
Example 24: label 0, features [ 4.8  3.4  1.9  0.2]
Example 25: label 0, features [ 5.   3.   1.6  0.2]
Example 26: label 0, features [ 5.   3.4  1.6  0.4]
Example 27: label 0, features [ 5.2  3.5  1.5  0.2]
Example 28: label 0, features [ 5.2  3.4  1.4  0.2]
Example 29: label 0, features [ 4.7  3.2  1.6  0.2]
Example 30: label 0, features [ 4.8  3.1  1.6  0.2]
Example 31: label 0, features [ 5.4  3.4  1.5  0.4]
Example 32: label 0, features [ 5.2  4.1  1.5  0.1]
Example 33: label 0, features [ 5.5  4.2  1.4  0.2]
Example 34: label 0, features [ 4.9  3.1  1.5  0.1]
Example 35: label 0, features [ 5.   3.2  1.2  0.2]
Example 36: label 0, features [ 5.5  3.5  1.3  0.2]
Example 37: label 0, features [ 4.9  3.1  1.5  0.1]
Example 38: label 0, features [ 4.4  3.   1.3  0.2]
Example 39: label 0, features [ 5.1  3.4  1.5  0.2]
Example 40: label 0, features [ 5.   3.5  1.3  0.3]
Example 41: label 0, features [ 4.5  2.3  1.3  0.3]
Example 42: label 0, features [ 4.4  3.2  1.3  0.2]
Example 43: label 0, features [ 5.   3.5  1.6  0.6]
Example 44: label 0, features [ 5.1  3.8  1.9  0.4]
Example 45: label 0, features [ 4.8  3.   1.4  0.3]
Example 46: label 0, features [ 5.1  3.8  1.6  0.2]
Example 47: label 0, features [ 4.6  3.2  1.4  0.2]
Example 48: label 0, features [ 5.3  3.7  1.5  0.2]
Example 49: label 0, features [ 5.   3.3  1.4  0.2]
Example 50: label 1, features [ 7.   3.2  4.7  1.4]
Example 51: label 1, features [ 6.4  3.2  4.5  1.5]
Example 52: label 1, features [ 6.9  3.1  4.9  1.5]
Example 53: label 1, features [ 5.5  2.3  4.   1.3]
Example 54: label 1, features [ 6.5  2.8  4.6  1.5]
Example 55: label 1, features [ 5.7  2.8  4.5  1.3]
Example 56: label 1, features [ 6.3  3.3  4.7  1.6]
Example 57: label 1, features [ 4.9  2.4  3.3  1. ]
Example 58: label 1, features [ 6.6  2.9  4.6  1.3]
Example 59: label 1, features [ 5.2  2.7  3.9  1.4]
Example 60: label 1, features [ 5.   2.   3.5  1. ]
Example 61: label 1, features [ 5.9  3.   4.2  1.5]
Example 62: label 1, features [ 6.   2.2  4.   1. ]
Example 63: label 1, features [ 6.1  2.9  4.7  1.4]
Example 64: label 1, features [ 5.6  2.9  3.6  1.3]
Example 65: label 1, features [ 6.7  3.1  4.4  1.4]
Example 66: label 1, features [ 5.6  3.   4.5  1.5]
Example 67: label 1, features [ 5.8  2.7  4.1  1. ]
Example 68: label 1, features [ 6.2  2.2  4.5  1.5]
Example 69: label 1, features [ 5.6  2.5  3.9  1.1]
Example 70: label 1, features [ 5.9  3.2  4.8  1.8]
Example 71: label 1, features [ 6.1  2.8  4.   1.3]
Example 72: label 1, features [ 6.3  2.5  4.9  1.5]
Example 73: label 1, features [ 6.1  2.8  4.7  1.2]
Example 74: label 1, features [ 6.4  2.9  4.3  1.3]
Example 75: label 1, features [ 6.6  3.   4.4  1.4]
Example 76: label 1, features [ 6.8  2.8  4.8  1.4]
Example 77: label 1, features [ 6.7  3.   5.   1.7]
Example 78: label 1, features [ 6.   2.9  4.5  1.5]
Example 79: label 1, features [ 5.7  2.6  3.5  1. ]
Example 80: label 1, features [ 5.5  2.4  3.8  1.1]
Example 81: label 1, features [ 5.5  2.4  3.7  1. ]
Example 82: label 1, features [ 5.8  2.7  3.9  1.2]
Example 83: label 1, features [ 6.   2.7  5.1  1.6]
Example 84: label 1, features [ 5.4  3.   4.5  1.5]
Example 85: label 1, features [ 6.   3.4  4.5  1.6]
Example 86: label 1, features [ 6.7  3.1  4.7  1.5]
Example 87: label 1, features [ 6.3  2.3  4.4  1.3]
Example 88: label 1, features [ 5.6  3.   4.1  1.3]
Example 89: label 1, features [ 5.5  2.5  4.   1.3]
Example 90: label 1, features [ 5.5  2.6  4.4  1.2]
Example 91: label 1, features [ 6.1  3.   4.6  1.4]
Example 92: label 1, features [ 5.8  2.6  4.   1.2]
Example 93: label 1, features [ 5.   2.3  3.3  1. ]
Example 94: label 1, features [ 5.6  2.7  4.2  1.3]
Example 95: label 1, features [ 5.7  3.   4.2  1.2]
Example 96: label 1, features [ 5.7  2.9  4.2  1.3]
Example 97: label 1, features [ 6.2  2.9  4.3  1.3]
Example 98: label 1, features [ 5.1  2.5  3.   1.1]
Example 99: label 1, features [ 5.7  2.8  4.1  1.3]
Example 100: label 2, features [ 6.3  3.3  6.   2.5]
Example 101: label 2, features [ 5.8  2.7  5.1  1.9]
Example 102: label 2, features [ 7.1  3.   5.9  2.1]
Example 103: label 2, features [ 6.3  2.9  5.6  1.8]
Example 104: label 2, features [ 6.5  3.   5.8  2.2]
Example 105: label 2, features [ 7.6  3.   6.6  2.1]
Example 106: label 2, features [ 4.9  2.5  4.5  1.7]
Example 107: label 2, features [ 7.3  2.9  6.3  1.8]
Example 108: label 2, features [ 6.7  2.5  5.8  1.8]
Example 109: label 2, features [ 7.2  3.6  6.1  2.5]
Example 110: label 2, features [ 6.5  3.2  5.1  2. ]
Example 111: label 2, features [ 6.4  2.7  5.3  1.9]
Example 112: label 2, features [ 6.8  3.   5.5  2.1]
Example 113: label 2, features [ 5.7  2.5  5.   2. ]
Example 114: label 2, features [ 5.8  2.8  5.1  2.4]
Example 115: label 2, features [ 6.4  3.2  5.3  2.3]
Example 116: label 2, features [ 6.5  3.   5.5  1.8]
Example 117: label 2, features [ 7.7  3.8  6.7  2.2]
Example 118: label 2, features [ 7.7  2.6  6.9  2.3]
Example 119: label 2, features [ 6.   2.2  5.   1.5]
Example 120: label 2, features [ 6.9  3.2  5.7  2.3]
Example 121: label 2, features [ 5.6  2.8  4.9  2. ]
Example 122: label 2, features [ 7.7  2.8  6.7  2. ]
Example 123: label 2, features [ 6.3  2.7  4.9  1.8]
Example 124: label 2, features [ 6.7  3.3  5.7  2.1]
Example 125: label 2, features [ 7.2  3.2  6.   1.8]
Example 126: label 2, features [ 6.2  2.8  4.8  1.8]
Example 127: label 2, features [ 6.1  3.   4.9  1.8]
Example 128: label 2, features [ 6.4  2.8  5.6  2.1]
Example 129: label 2, features [ 7.2  3.   5.8  1.6]
Example 130: label 2, features [ 7.4  2.8  6.1  1.9]
Example 131: label 2, features [ 7.9  3.8  6.4  2. ]
Example 132: label 2, features [ 6.4  2.8  5.6  2.2]
Example 133: label 2, features [ 6.3  2.8  5.1  1.5]
Example 134: label 2, features [ 6.1  2.6  5.6  1.4]
Example 135: label 2, features [ 7.7  3.   6.1  2.3]
Example 136: label 2, features [ 6.3  3.4  5.6  2.4]
Example 137: label 2, features [ 6.4  3.1  5.5  1.8]
Example 138: label 2, features [ 6.   3.   4.8  1.8]
Example 139: label 2, features [ 6.9  3.1  5.4  2.1]
Example 140: label 2, features [ 6.7  3.1  5.6  2.4]
Example 141: label 2, features [ 6.9  3.1  5.1  2.3]
Example 142: label 2, features [ 5.8  2.7  5.1  1.9]
Example 143: label 2, features [ 6.8  3.2  5.9  2.3]
Example 144: label 2, features [ 6.7  3.3  5.7  2.5]
Example 145: label 2, features [ 6.7  3.   5.2  2.3]
Example 146: label 2, features [ 6.3  2.5  5.   1.9]
Example 147: label 2, features [ 6.5  3.   5.2  2. ]
Example 148: label 2, features [ 6.2  3.4  5.4  2.3]
Example 149: label 2, features [ 5.9  3.   5.1  1.8]

In [11]:
import numpy as np

In [12]:
test_idx = [0,50,100]

In [14]:
#training data
train_target = np.delete(iris.target,test_idx)
train_data = np.delete(iris.data,test_idx,axis=0)

In [16]:
#testing data
test_target = iris.target[test_idx] 
test_data = iris.data[test_idx]

In [17]:
from sklearn import tree
clf = tree.DecisionTreeClassifier()

In [18]:
clf = clf.fit(train_data,train_target)

In [19]:
print test_target


[0 1 2]

In [20]:
print clf.predict(test_data)


[0 1 2]

In [ ]: