In [13]:
GPU_NUMBER = 3
root = '/data/vision/torralba/health-habits/other/enes/'
%matplotlib inline
import matplotlib.pyplot as plt
import os
import sys
import random
import json
import math
import fnmatch
import os
sys.path.append( root + 'Utils/')
import pandas as pd
import numpy as np
import tensorflow as tf
from PIL import Image
from IPython.display import display
from pprint import pprint
from notebook_utils import *
from skimage import color, io
In [14]:
matches = []
for root, dirnames, filenames in os.walk('/data/vision/torralba/yusuf/imagenet/data/images/train256/'):
write(root)
for filename in fnmatch.filter(filenames, '*.JPEG'):
matches.append(os.path.join(root, filename))
In [15]:
len(matches)
Out[15]:
In [17]:
with open('all_paths.txt', 'w') as f:
for match in matches:
f.write( match + '\n' )
In [36]:
def check_grayscale(path):
img = io.imread( path )
if len(img.shape) < 3:
return False
img = color.rgb2lab(img)
return np.sum( abs(img[:,:,1:3]) > 5 ) > 0
In [ ]:
color_paths = []
for i in range(len(matches)):
path = matches[i]
write(i)
if check_grayscale(path):
color_paths.append( path )
In [39]:
with open('color_paths.txt', 'w') as f:
for path in color_paths:
f.write( path + '\n' )
In [38]:
print 'asdf'
In [40]:
print len(color_paths)
In [42]:
print len(matches)
In [43]:
len(matches) - len(color_paths)
Out[43]:
In [ ]: