In [10]:
import pandas as pd
data = pd.read_csv('/Users/markhoughton/Documents/code_projects/py_projects/euroscipy_2015/stats/examples/brain_size.csv', sep=';', na_values=".")
data
Out[10]:
In [11]:
import numpy as np
t = np.linspace(-6, 6, 20)
sin_t = np.sin(t)
cos_t = np.cos(t)
In [12]:
pd.DataFrame({'t':t, 'sin':sin_t, 'cos':cos_t})
Out[12]:
In [13]:
data.shape
Out[13]:
In [14]:
data.columns
Out[14]:
In [15]:
data['Gender']
Out[15]:
In [16]:
# Simpler selector
data[data['Gender'] == 'Female']['VIQ'].mean()
Out[16]:
In [21]:
groupby_gender = data.groupby('Gender')
for gender, value in groupby_gender['VIQ']:
print gender,value.mean()
In [22]:
groupby_gender.mean()
Out[22]:
In [25]:
from pandas.tools import plotting
plotting.scatter_matrix(data[['Weight','Height','MRI_Count']])
show()
In [28]:
plotting.scatter_matrix(data[['PIQ','VIQ','FSIQ']])
show()
In [32]:
from scipy import stats
stats.ttest_1samp(data['VIQ'], 0)
Out[32]:
In [ ]: