In [2]:
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat
from pandas import DataFrame
from numpy.random import multivariate_normal
from numpy.linalg import inv
from pykalman import KalmanFilter
%matplotlib inline
In [3]:
def Relu(z):
return np.max((z, np.zeros(z.shape)), axis=0)
def dRelu(z):
return (z > 0) * 1
p = 3
q = 10
T = 500
data = loadmat('Tut11_file1.mat')
locals().update(data)
data.keys()
Out[3]:
In [4]:
z = np.zeros((p, T + 1))
x = np.zeros((q, T + 1))
np.random.seed(10)
z[:,[0]] = mu0 #+ multivariate_normal(np.zeros(p), Sigma).reshape(mu0.shape)
def transition_f(z):
return A.dot(z) + W.dot(np.maximum(z, 0.))
def obs_g(x):
return B.dot(x)
for t in range(T):
x[:, t + 1] = obs_g(z[:, t]) #+ multivariate_normal(np.zeros(q), Gamma)
z[:, t + 1] = transition_f(z[:, t]) #+ multivariate_normal(np.zeros(p), Sigma)
x[:, 0] = np.ma.masked
In [5]:
# Filter
mu = np.zeros(z.shape)
K = np.zeros((p, q, T))
V = np.zeros((p, p, T))
L = np.zeros((p, p, T))
L[..., 0] = Sigma
# mu[..., [0]] = mu0
K[...,0] = L[..., 0].dot(B.T.dot(inv(B.dot(L[..., 0].dot(B.T)) + Gamma)))
mu[..., [0]] = A.dot(mu0) + K[..., 0].dot(x[:, [0]] - B.dot(A.dot(mu0)))
V[..., 0] = (np.eye(p) - K[..., 0].dot(B)).dot(Sigma)
#L[..., 0] = A.dot(V[..., 0].dot(A.T)) + Sigma
for t in range(1, T):
L[..., t] = A.dot(V[..., t - 1].dot(A.T)) + Sigma
K[...,t] = L[..., t].dot(B.T.dot(inv(B.dot(L[..., t].dot(B.T)) + Gamma)))
mu[..., [t]] = A.dot(mu[..., [t-1]]) + K[..., t].dot(x[:, [t]] - B.dot(A.dot(mu[..., [t-1]])))
V[..., t] = (np.eye(p) - K[..., t].dot(B)).dot(L[..., t])
#L[..., t] = A.dot(V[..., t].dot(A.T)) + Sigma
In [6]:
mu[:, 0:2]
Out[6]:
In [7]:
print ('Non smoothed result:', np.sum((mu[:, :-1] - z[:, 1:]).T ** 2))
print('Smoothed result:', np.sum((mu_tilde - z).T ** 2))
plt.plot(mu_tilde.T)
In [134]:
mu[:, :-1].shape
Out[134]:
In [146]:
# Filter
mu = np.zeros(z.shape)
K = np.zeros((p, q, T))
V = np.zeros((p, p, T))
L = np.zeros((p, p, T))
K[...,0] = Sigma.dot(B.T.dot(inv(B.dot(Sigma.dot(B.T)) + Gamma)))
mu[..., [0]] = A.dot(mu0) + W.dot(Relu(mu0)) + \
K[..., 0].dot(x[:, [0]] - B.dot(A.dot(mu0) + W.dot(Relu(mu0))))
V[..., 0] = (np.eye(p) - K[..., 0].dot(B)).dot(Sigma)
L[..., 0] = (A + W.dot(dRelu(mu0))).dot(V[..., 0].dot((A + W.dot(dRelu(mu0))).T)) + Sigma
for t in range(1, T):
K[...,t] = L[..., t - 1].dot(B.T.dot(inv(B.dot(L[..., t - 1].dot(B.T)) + Gamma)))
mu[..., [t]] = A.dot(mu[..., [t-1]]) + W.dot(Relu(mu[..., [t-1]])) + \
K[..., t].dot(x[:, [t]] - B.dot(A.dot(mu[..., [t-1]]) + W.dot(Relu(mu[..., [t-1]]))))
V[..., t] = (np.eye(p) - K[..., t].dot(B)).dot(L[..., t-1])
L[..., t] = (A + W.dot(dRelu(mu[..., [t-1]]))).dot(V[..., t].dot(A + W.dot(dRelu(mu[..., [t-1]])))) + Sigma