In [12]:
import scipy.integrate
import scipy.sparse
import numpy as np
import collections
import matplotlib.pyplot as plt
%matplotlib inline

class IVPResult:
    pass

def solve_ivp(f, ts, x0, p=None, integrator='dopri5', store_trajectory=False,
              sens=False, dfx=None, dfp=None):
    """
    Solve initial value problem
        d/dt x = f(t, x, p);  x(t0) = x0.

    Evaluate Solution at time points specified in ts, with ts[0] = t0.

    Compute sensitivity matrices evaluated at time points in ts if sens=True.
    """

    if sens:
        def f_vode(t, xGxGp, p):
            x     = xGxGp[:x0.shape[0]]
            Gx    = xGxGp[x0.shape[0]:x0.shape[0]+x0.shape[0]*x0.shape[0]]
            Gx    = Gx.reshape([x0.shape[0], x0.shape[0]])
            Gp    = xGxGp[x0.shape[0]+x0.shape[0]*x0.shape[0]:]
            Gp    = Gp.reshape([x0.shape[0], p.shape[0]])
            dx    = f(t, x, p)
            dfxev = dfx(t, x, p)
            dfpev = dfp(t, x, p)
            dGx   = dfxev.dot(Gx)
            dGp   = dfxev.dot(Gp) + dfpev
            return np.concatenate(
                [dx,
                 dGx.reshape(-1),
                 dGp.reshape(-1)])

        ivp = scipy.integrate.ode(f_vode)
    else:
        ivp = scipy.integrate.ode(f)

    ivp.set_integrator(integrator)

    if store_trajectory:
        times = []
        points = []
        def solout(t, x):
            if len(times) == 0 or t != times[-1]:
                times.append(t)
                points.append(np.copy(x[:x0.shape[0]]))
        ivp.set_solout(solout)

    if sens:
        ivp.set_initial_value(np.concatenate(
            [x0,
             np.eye(x0.shape[0]).reshape(-1),
             np.zeros([x0.shape[0], p.shape[0]]).reshape(-1)
            ]), ts[0])
    else:
        ivp.set_initial_value(x0, ts[0])
    ivp.set_f_params(p)

    result = IVPResult()
    result.ts = ts
    result.xs  = np.zeros([ts.shape[0], x0.shape[0]])
    if sens:
        result.Gxs = np.zeros([ts.shape[0], x0.shape[0], x0.shape[0]])
        result.Gps = np.zeros([ts.shape[0], x0.shape[0], p.shape[0]])
    result.success = True

    result.xs[0,:] = x0
    for ii in range(1,ts.shape[0]):
        ivp.integrate(ts[ii])
        result.xs[ii,:]    = ivp.y[:x0.shape[0]]
        if sens:
            result.Gxs[ii,:,:] = ivp.y[x0.shape[0]:x0.shape[0]+x0.shape[0]*x0.shape[0]].reshape([x0.shape[0], x0.shape[0]])
            result.Gps[ii,:,:] = ivp.y[x0.shape[0]+x0.shape[0]*x0.shape[0]:].reshape([x0.shape[0], p.shape[0]])
        if not ivp.successful():
            result.success = False
            break

    if store_trajectory:
        result.trajectory_t = np.array(times)
        result.trajectory_x = np.array(points)

    return result


# the professor said that delta x should be a vector of dimension equal to the number
# of variables, which is true only if we do not change the parameters,  for this reason
# I had to change the algorithm a bit (see next 2  comments)
def evaluate_parest_single_shooting(f, dfx, dfp, meas_times, meas_values, s0, p):
    result  = solve_ivp(f, meas_times, s0, p=p, sens=True, dfx=dfx, dfp=dfp)
    m = len(meas_times)
    nx = len(s0)
    nv = nx + len(p)
    # I make F a column vector with [y11, y12, y21, y22, y31, y32, ... ym1, ym2]
    F = (meas_values - result.xs).reshape((m * nx, 1))
    # each row of J will be [dFij / dx01, dFij / dx02, dFij / dp1, ..., dFij / dp6 ]
    J = np.zeros((m * nx, nv))
    dy = np.eye(nx)
    for i in range(m):
        for j in range(nx):
            #print(2 * m + nx)
            # for the first term i think dhi / dy = dyi / dy = all zeros except for the ith element
            # that will be 1
            # For dFij / dp I thought that dhi / dp = dyi(tj, yi, p) / dp for some reason is equal to 0
            # but now I don't remember and it confuses me a lot, so if you have any idea tell pleas.
            J[2 * i + j, :] = np.hstack((dy[[j], :].dot(result.Gxs[i]), dy[[j], :].dot(result.Gps[i])))
    return F, J

In [13]:
def dX_dt(t, X, p):
    R = X[0]
    F = X[1]
    alpha, beta, gamma, delta = p
    dRdt = alpha * R - beta * F * R
    dFdt = gamma * R * F - delta * F
    return np.array([dRdt,dFdt])

def dfx(t, X, p):

    R = X[0]
    F = X[1]
    alpha, beta, gamma, delta = p
    return np.array([alpha - beta * F, - beta * R, gamma * F,\
                            gamma * R -  delta]).reshape((2, 2))

def dfp(t, X, p):
    R = X[0]
    F = X[1]
    alpha, beta, gamma, delta = p

    return np.array([[R, - F * R, 0., 0.],[0., 0.,  R * F, -F]])



X0 = np.array([20.,10.])
param = np.array((.2, .01, .001, .1))
result = solve_ivp(dX_dt, np.array([0, 300]), X0, p=param,\
                   integrator='dopri5', store_trajectory=True, sens=True, dfx=dfx, dfp=dfp)

In [36]:
# I did  not create the gauss newton method function, but I basically implemented the algo
# I honestly don't get how to implement it their way

np.random.seed(31)
meas_times = np.arange(21) * 5
noise = 5. * np.random.rand(21, 2)
x0_init = np.array([20., 10.])
param_init = np.array((.2, .01, .001, .1))
result = solve_ivp(dX_dt, meas_times, x0_init, p=param_init)
meas_values = result.xs + noise

# I start with an alpha variation ftom the true values 
alpha = .01
x0 = x0_init * (1 + alpha * np.random.rand(len(x0_init)))
param = param_init * (1 + alpha * np.random.rand(len(param_init.shape))) 
tau = .5
N = 25
Fs = np.zeros(N)
for i in range(N):
    F, J= evaluate_parest_single_shooting(dX_dt, dfx, dfp, meas_times, meas_values, x0, param)
    Dx = np.linalg.lstsq(J, F)[0]
    #print (Dx.shape)
    x0 += tau * Dx.flatten()[:2]
    param += tau * Dx.flatten()[2:]
    Fs[i] = (np.linalg.norm(F))
plt.plot(Fs)
Fs


Out[36]:
array([ 31.76233028,  18.58916713,  13.89904475,  12.51202797,
        12.14389835,  12.04682779,  12.01963921,  12.01110797,
        12.0079994 ,  12.00668767,  12.00607026,  12.00576003,
        12.00559879,  12.00551366,  12.00546841,  12.0054443 ,
        12.00543144,  12.0054246 ,  12.00542095,  12.00541901,
        12.00541798,  12.00541743,  12.00541714,  12.00541698,  12.0054169 ])

In [37]:
print('relative  error')
print((param - param_init) / param_init)
print((x0 - x0_init)/ x0_init, '\n')
print('estimated parameter vs true ones')
print(param)
print(param_init)


relative  error
[ 0.00698013 -0.05993932 -0.0312255  -0.01620582]
[ 0.03716307  0.09653195] 

estimated parameter vs true ones
[ 0.20139603  0.00940061  0.00096877  0.09837942]
[ 0.2    0.01   0.001  0.1  ]

In [2]:
from sympy import *
theta = Symbol('theta')
A = Matrix([[cos(theta), sin(theta)], [sin(theta), cos(theta)]])

In [4]:
A.T * A


Out[4]:
Matrix([
[sin(theta)**2 + cos(theta)**2,       2*sin(theta)*cos(theta)],
[      2*sin(theta)*cos(theta), sin(theta)**2 + cos(theta)**2]])

In [ ]: