In [1]:
import pandas as pd
In [2]:
import warnings
In [3]:
import seaborn as sns
In [16]:
import matplotlib.pyplot as plt
%matplotlib inline
In [17]:
sns.set(style="white", color_codes=True)
In [51]:
iris = pd.read_csv("../data/iris/Iris.csv")
In [50]:
iris.head()
Out[50]:
In [20]:
iris.tail()
Out[20]:
In [21]:
iris["Species"].value)counts()
In [22]:
iris["Species"].value_counts()
Out[22]:
In [23]:
iris.plot(kind="scatter", x="SepalLengthCm", y="SepalWidthCm")
Out[23]:
In [15]:
iris.plot(kind="scatter", x="SepalLengthCm", y="SepalWidthCm")
Out[15]:
In [25]:
sns.jointplot(x="SepalLengthCm", y="SepalWidthCm", data=iris, size=7)
Out[25]:
In [26]:
sns.FacetGrid(iris, hue="Species", size=10) \
.map(plt.scatter, "SepalLengthCm", "SepalWidthCm") \
.add_legend()
Out[26]:
In [49]:
sns.boxplot(x="Species", y="PetalWidthCm", data=iris)
Out[49]:
In [29]:
ax = sns.boxplot(x="Species", y="PetalLengthCm", data=iris)
In [30]:
ax = sns.stripplot(x="Species", y="PetalLengthCm", data=iris, jitter=True, edgecolor="gray")
In [31]:
ax = sns.boxplot(x="Species", y="PetalLengthCm", data=iris)
ax = sns.stripplot(x="Species", y="PetalLengthCm", data=iris, jitter=True, edgecolor="gray")
In [33]:
sns.violinplot(x="Species", y="PetalLengthCm", data=iris, size=6)
Out[33]:
In [36]:
sns.FacetGrid(iris, hue="Species", size=6).map(sns.kdeplot, "PetalLengthCm").add_legend()
Out[36]:
In [37]:
sns.pairplot(iris.drop("Id", axis=1), hue="Species", size=3)
Out[37]:
In [38]:
sns.pairplot(iris.drop("Id", axis=1), hue="Species", size=3, diag_kind="kde")
Out[38]:
In [39]:
iris.drop("Id", axis=1).boxplot(by="Species", figsize=(12,6))
Out[39]:
In [40]:
from pandas.tools.plotting import andrews_curves
In [41]:
andrews_curves(iris.drop("Id", axis=1), "Species")
Out[41]:
In [42]:
from pandas.tools.plotting import parallel_coordinates
In [43]:
parallel_coordinates(iris.drop("Id",axis=1), "Species")
Out[43]:
In [44]:
from pandas.tools.plotting import radviz
In [45]:
radviz(iris.drop("Id", axis=1), "Species")
Out[45]:
In [2]:
import matplotlib.pyplot as plt
%matplotlib inline
In [4]:
plt.hist([1,1,2,3,3])
Out[4]:
In [ ]: