In [1]:
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

In [7]:
def seed(args):
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)

In [8]:
def keywords(args):
    kwargs = {'num_workers':1, 'pin_memory':True} if args.cuda else {}

In [9]:
def load_train(args):
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                   ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('../data', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    return train_loader,test_loader

In [10]:
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)

In [12]:
def get_model(args):
    model = Net()
    if args.cuda:
        model.cuda()
    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    return model, optimizer

In [13]:
def train(epoch model):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))

In [14]:
def test(epoch, model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        output = model(data)
        test_loss += F.nll_loss(output, target).data[0]
        pred = output.data.max(1)[1] # get the index of the max log-probability
        correct += pred.eq(target.data).cpu().sum()

    test_loss = test_loss
    test_loss /= len(test_loader) # loss function already averages over batch size
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

In [19]:
def main():
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                    help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                    help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                    help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                    help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='enables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                    help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')
    args = parser.parse_args()
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    print(args)
    '''
    train_loader,test_loader = 
    model = get
    for epoch in range(1, args.epochs + 1):
        train(epoch)
        test(epoch)
    '''
    
if __name__ == '__main__':
    main()


usage: __main__.py [-h] [--batch-size N] [--test-batch-size N] [--epochs N]
                   [--lr LR] [--momentum M] [--no-cuda] [--seed S]
                   [--log-interval N]
__main__.py: error: unrecognized arguments: -f /Users/page/Library/Jupyter/runtime/kernel-f1ffef1c-8faa-44c7-a0b6-0f38b10b5892.json
An exception has occurred, use %tb to see the full traceback.

SystemExit: 2
/usr/local/lib/python3.5/site-packages/IPython/core/interactiveshell.py:2889: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.
  warn("To exit: use 'exit', 'quit', or Ctrl-D.", stacklevel=1)

In [ ]: