In [ ]:
import tensorflow as tf
In [ ]:
import numpy as np
from sklearn import metrics
In [ ]:
layers = tf.contrib.layers
learn = tf.contrib.learn
In [ ]:
def max_pool_2x2(tensor_in):
return tf.nn.max_pool(tensor_in, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
In [ ]:
def conv_model(feature, target, mode):
target = tf.one_hot(tf.cast(target, tf.int32),10, 1, 0)
feature = tf.reshape(feature, [-1, 28, 28, 1])
with tf.variable_scope('conv_layer1'):
h_conv1 = layers.convolution2d(feature, 32,
kernel_size=[5,5], activation_fn = tf.nn.relu)
h_pool1 = max_pool_2x2(h_conv1)
with tf.variable_scope('conv_layer2'):
h_conv2 = layers.convolution2d(h_pool1, 64,
kernel_size=[5,5],activation_fn = tf.nn.relu)
h_pool2 = max_pool_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 *64])
h_fc1 = layers.dropout(
layers.fully_connected(
h_pool2_flat, 1024, activation_fn=tf.nn.relu),
keep_prob = 0.5,
is_training=mode == tf.contrib.learn.ModeKeys.TRAIN)
logits = layers.fully_connected(h_fc1, 10, activation_fn=None)
loss = tf.contrib.losses.softmax_cross_entropy(logits,target)
train_op = layers.optimize_loss(
loss,
tf.contrib.framework.get_global_step(),
optimizer = 'SGD',
learning_rate = 0.001)
return tf.argmax(logits, 1), loss, train_op
In [ ]:
def main(unused_args):
mnist = learn.datasets.load_dataset('mnist')
feature_columns = learn.infer_real_valued_columns_from_input(mnist.train.images)
classifier = learn.LinearClassifier(
feature_columns=feature_columns, n_classes=10)
classifier.fit(mnist.train.images, mnist.train.labels.astype(np.int32),
batch_size=100, steps=1000)
score = metrics.accuracy_score(mnist.test.labels,
list(classifier.predict(mnist.test.images)))
print('Accuracy: {0:f}'.format(score))
classifier = learn.Estimator(model_fn = conv_model)
classifier.fit(mnist.train.images, mnist.train.labels,
batch_size = 100, steps = 20000)
score = metrics.accuracy_score(mnist.test.labels,
list(classifier.predict(mnist.test.images)))
print('Accuracy: {0:f}'.format(score))
In [ ]:
tf.app.run()
In [ ]:
In [ ]:
In [ ]: