In [3]:
import numpy as np
#先定义网络结构: batch_size, Input Dimension, Hidden Dimension, Output Dimension
N, D_in, D_hidden, D_out = 10, 20, 30, 5
#随机生成输入和输出数据
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)
#对输入层和输出层的参数进行初始化
w1 = np.random.randn(D_in, D_hidden)
w2 = np.random.randn(D_hidden, D_out)
learning_rate = 0.001
#循环更新参数,每个循环前向和反向各计算一次
for i in xrange(50):
# 计算前向通道
h_linear = x.dot(w1) #10x20 and 20x30 produce 10x30, which is the shape of h_linear
h_relu = np.maximum(h_linear, 0) #note one have to use np.maximum but not np.max, 10x30
y_pred = h_relu.dot(w2) #10x30 and 30x5 produce 10x5
#定义代价函数
loss = 0.5 * np.sum(np.square(y_pred - y)) #sum squared error as loss
# 反向求导
grad_y_pred = y_pred - y #10x5
grad_w2 = h_relu.T.dot(grad_y_pred) #30x10 and 10x5 produce the dimension of w2: 30x5
grad_h_relu = grad_y_pred.dot(w2.T) #30x5 and 10x5 produce the dimension of h_relu: 10x30
grad_h = grad_h_relu.copy()
grad_h[h_linear < 0] = 0 #替代针对隐含层导数中的负数为零
grad_w1 = x.T.dot(grad_h) #20x10 and 10x30 produce 20x30
#梯度下降法更新参数
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
In [ ]:
import torch as T
#先定义网络结构: batch_size, Input Dimension, Hidden Dimension, Output Dimension
N, D_in, D_hidden, D_out = 10, 20, 30, 5
#随机生成输入和输出数据
x = T.randn(N, D_in)
y = T.randn(N, D_out)
#对输入层和输出层的参数进行初始化
w1 = T.randn(D_in, D_hidden)
w2 = T.randn(D_hidden, D_out)
learning_rate = 0.001
#循环更新参数,每个循环前向和反向各计算一次
for i in xrange(50):
# 计算前向通道
#mm should also work as x is a matrix. The matrix multiplication will be summarized in another post
h_linear = x.matmul(w1) #10x20 and 20x30 produce 10x30, which is the shape of h_linear
h_relu = h_linear.clamp(min=0) #note one have to use np.maximum but not np.max, 10x30
y_pred = h_relu.matmul(w2) #10x30 and 30x5 produce 10x5
#定义代价函数
loss = 0.5 * (y_pred - y).pow(2).sum() #sum squared error as loss
# 反向求导
grad_y_pred = y_pred - y #10x5
grad_w2 = h_relu.t().mm(grad_y_pred) #30x10 and 10x5 produce the dimension of w2: 30x5
grad_h_relu = grad_y_pred.dot(w2.t()) #30x5 and 10x5 produce the dimension of h_relu: 10x30
grad_h = grad_h_relu.clone()
grad_h[h_linear < 0] = 0 #替代针对隐含层导数中的负数为零
grad_w1 = x.t().mm(grad_h) #20x10 and 10x30 produce 20x30
#梯度下降法更新参数
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
In [2]:
import torch as T
from torch.autograd import Variable
#先定义网络结构: batch_size, Input Dimension, Hidden Dimension, Output Dimension
N, D_in, D_hidden, D_out = 10, 20, 30, 5
#随机生成输入和输出数据, 并用Variable对输入输出进行封装,同时在计算图形中不要求求导
x = Variable(T.randn(N, D_in), requires_grad=False)
y = Variable(T.randn(N, D_out), requires_grad=False)
#对输入层和输出层的参数进行初始化,并用Variable封装,同时要求求导
w1 = Variable(T.randn(D_in, D_hidden), requires_grad=True)
w2 = Variable(T.randn(D_hidden, D_out), requires_grad=True)
learning_rate = 0.001
#循环更新参数,每个循环前向和反向各计算一次
for i in xrange(50):
# 计算前向通道
#mm should also work as x is a matrix. The matrix multiplication will be summarized in another post
h_linear = x.matmul(w1) #10x20 and 20x30 produce 10x30, which is the shape of h_linear
h_relu = h_linear.clamp(min=0) #note one have to use np.maximum but not np.max, 10x30
y_pred = h_relu.matmul(w2) #10x30 and 30x5 produce 10x5
#定义代价函数
loss = 0.5 * (y_pred - y).pow(2).sum() #sum squared error as loss
loss.backward()
#梯度下降法更新参数
w1.data -= learning_rate * w1.grad.data #note that we are updating the 'data' of Variable w1
w2.data -= learning_rate * w2.grad.data
#PyTorch中,将grad中的值在循环中进行累积,当不须此操作时,应清零
w1.grad.data.zero_()
w2.grad.data.zero_()
In [ ]:
In [ ]:
In [ ]:
In [ ]: