In [61]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
In [62]:
import antipackage
from github.ellisonbg.misc import vizarray as va
In [63]:
import numpy as np
In [104]:
data = [0,2,4,6]
a = np.array(data)
In [105]:
type(a)
Out[105]:
In [106]:
a
Out[106]:
In [107]:
va.vizarray(a)
Out[107]:
In [108]:
a.shape
Out[108]:
In [109]:
a.ndim
Out[109]:
In [110]:
a.size
Out[110]:
In [111]:
a.nbytes
Out[111]:
In [112]:
a.dtype
Out[112]:
In [113]:
data = [[0.0,2.0,4.0,6.0], [1.0,3.0,5.0,7.0]]
b = np.array(data)
In [114]:
b
Out[114]:
In [115]:
va.vazarray(b)
In [116]:
b.shape, b.ndim, b.size, b.nbytes
Out[116]:
In [117]:
c = np.arange(0.0,10.0,1.0)
c
Out[117]:
In [118]:
e = np.linspace(0.0, 5.0, 11)
e
Out[118]:
In [119]:
np.empty((4,4))
Out[119]:
In [120]:
np.zeros((3,3))
Out[120]:
In [121]:
np.ones((3,3))
Out[121]:
In [122]:
np.empty_like((3,3))
Out[122]:
In [123]:
a = np.array([0,1,2,3])
In [124]:
a, a.dtype
Out[124]:
In [125]:
b = np.zeros((2,2), dtype = np.complex64)
b
Out[125]:
In [144]:
c = np.arange(0, 10, 2, dtype=np.float)
c
Out[144]:
In [145]:
d = c.astype(dtype=np.int)
In [146]:
d
Out[146]:
In [162]:
np.float
Out[162]:
In [163]:
a = np.empty((3,3))
a.fill(0.1)
a
Out[163]:
In [164]:
b = np.ones((3,3))
b
Out[164]:
In [165]:
a + b
Out[165]:
In [151]:
b/a
Out[151]:
In [152]:
a/b
Out[152]:
In [153]:
a**2
Out[153]:
In [154]:
np.pi*b
Out[154]:
In [170]:
a = np.random.rand(10,10)
In [171]:
va.enable()
In [172]:
a
Out[172]:
In [173]:
a[0,0]
Out[173]:
In [174]:
a[-1,-1] == a[9,9]
Out[174]:
In [175]:
a[:,0]
Out[175]:
In [176]:
a[-1,:]
Out[176]:
In [177]:
a[0:2,0:2]
Out[177]:
In [178]:
a[0:5, 0:5] = 1.0
In [179]:
a
Out[179]:
In [180]:
va.disable()
In [181]:
ages = np.array([23,56,67,89,23,56,27,12,8,72])
genders = np.array(['m','m','f','f','m','f','m','m','m','f'])
In [182]:
ages >30
Out[182]:
In [183]:
genders == 'm'
Out[183]:
In [186]:
(ages > 10) & (ages < 50)
Out[186]:
In [187]:
mask = (genders == 'f')
ages[mask]
Out[187]:
In [188]:
ages[ages>30]
Out[188]:
In [ ]: