Project Euler: Problem 9

https://projecteuler.net/problem=9

A Pythagorean triplet is a set of three natural numbers, $a < b < c$, for which,

$$a^2 + b^2 = c^2$$

For example, $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.

There exists exactly one Pythagorean triplet for which $a + b + c = 1000$. Find the product abc.


In [54]:
#so many for loops!!

for a in range(1, 1000):
    for b in range(a, 1000):
        c = 1000 - a - b
        if c > 0:                     #gives us a value for c that is not 0... 
            if c**2 == a**2 + b**2:
                print (a*b*c)         #answer
                
                #and just because I am curious..
                print(a)
                print(b)
                print(c)


31875000
200
375
425

In [18]:
# This cell will be used for grading, leave it at the end of the notebook.

In [ ]: