In [1]:
%pylab inline
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import numpy.random as rng
import pandas_datareader.data as web
import numpy as np
import pandas as pd
In [2]:
def get_prices(symbol):
start, end = '2007-05-02', '2016-04-11'
data = web.DataReader(symbol, 'google', start, end)
data=pd.DataFrame(data)
prices=data['Close']
prices=prices.astype(float)
return prices
def get_returns(prices):
return ((prices-prices.shift(-1))/prices)[:-1]
def get_data(list):
l = []
for symbol in list:
rets = get_returns(get_prices(symbol))
l.append(rets)
return np.array(l).T
def sort_data(rets):
ins = []
outs = []
for i in range(len(rets)-100):
ins.append(rets[i:i+100].tolist())
outs.append(rets[i+100])
return np.array(ins), np.array(outs)
In [3]:
symbol_list = ['C', 'GS']
rets = get_data(symbol_list)
ins, outs = sort_data(rets)
ins = ins.transpose([0,2,1]).reshape([-1, len(symbol_list) * 100])
div = int(.8 * ins.shape[0])
train_ins, train_outs = ins[:div], outs[:div]
test_ins, test_outs = ins[div:], outs[div:]
#normalize inputs
train_ins, test_ins = train_ins/np.std(ins), test_ins/np.std(ins)
In [4]:
sess = tf.InteractiveSession()
In [5]:
positions = tf.constant([-1,0,1]) #long, neutral or short
num_positions = 3
num_symbols = len(symbol_list)
num_samples = 20
x = tf.placeholder(tf.float32, [None, num_symbols * 100])
y_ = tf.placeholder(tf.float32, [None, num_symbols])
W = tf.Variable(tf.random_normal([num_symbols * 100, num_positions * num_symbols]))
b = tf.Variable(tf.random_normal([num_positions * num_symbols]))
y = tf.matmul(x, W) + b
# loop through symbol, taking the columns for each symbol's bucket together
pos = {}
sample_n = {}
sample_mask = {}
symbol_returns = {}
relevant_target_column = {}
for i in range(num_symbols):
# isolate the buckets relevant to the symbol and get a softmax as well
symbol_probs = y[:,i*num_positions:(i+1)*num_positions]
symbol_probs_softmax = tf.nn.softmax(symbol_probs) # softmax[i, j] = exp(logits[i, j]) / sum(exp(logits[i]))
# sample probability to chose our policy's action
sample = tf.multinomial(tf.log(symbol_probs_softmax), num_samples)
# isolate the probability of the selected policy (for use in calculating gradient)
for sample_iter in range(num_samples):
sample_n[i*num_samples + sample_iter] = sample[:,sample_iter]
pos[i*num_samples + sample_iter] = tf.reshape(sample_n[i*num_samples + sample_iter], [-1]) - 1
symbol_returns[i*num_samples + sample_iter] = tf.multiply(
tf.cast(pos[i*num_samples + sample_iter], float32),
y_[:,i])
sample_mask[i*num_samples + sample_iter] = tf.cast(tf.reshape(tf.one_hot(sample_n[i*num_samples + sample_iter], 3), [-1,3]), float32)
relevant_target_column[i*num_samples + sample_iter] = tf.reduce_sum(
symbol_probs_softmax * sample_mask[i*num_samples + sample_iter],1)
daily_returns_by_symbol_ = tf.concat(axis=1, values=[tf.reshape(t, [-1,1]) for t in symbol_returns.values()])
daily_returns_by_symbol = tf.transpose(tf.reshape(daily_returns_by_symbol_, [-1,2,num_samples]), [0,2,1]) #[?,5,2]
daily_returns = tf.reduce_mean(daily_returns_by_symbol, 2) # [?,5]
total_return = tf.reduce_prod(daily_returns+1, 0)
z = tf.ones_like(total_return) * -1
total_return = tf.add(total_return, z)
ann_vol = tf.multiply(
tf.sqrt(tf.reduce_mean(tf.pow((daily_returns - tf.reduce_mean(daily_returns, 0)),2),0)) ,
np.sqrt(252)
)
sharpe = tf.div(total_return, ann_vol)
#Maybe metric slicing later
#segment_ids = tf.ones_like(daily_returns[:,0])
#partial_prod = tf.segment_prod(daily_returns+1, segment_ids)
training_target_cols = tf.concat(axis=1, values=[tf.reshape(t, [-1,1]) for t in relevant_target_column.values()])
ones = tf.ones_like(training_target_cols)
gradient_ = tf.nn.sigmoid_cross_entropy_with_logits(labels=training_target_cols, logits=ones)
gradient = tf.transpose(tf.reshape(gradient_, [-1,2,num_samples]), [0,2,1]) #[?,5,2]
#cost = tf.multiply(gradient , daily_returns_by_symbol_reshaped)
#cost = tf.multiply(gradient , tf.expand_dims(daily_returns, -1))
cost = tf.multiply(gradient , tf.expand_dims(total_return, -1))
# cost = tf.multiply(gradient , tf.expand_dims(sharpe, -1))
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(cost)
costfn = tf.reduce_mean(cost)
In [6]:
# initialize variables to random values
init = tf.global_variables_initializer()
sess.run(init)
# run optimizer on entire training data set many times
train_size = train_ins.shape[0]
for epoch in range(2000):
start = rng.randint(train_size-50)
batch_size = rng.randint(2,75)
end = min(train_size, start+batch_size)
sess.run(optimizer, feed_dict={x: train_ins[start:end], y_: train_outs[start:end]})#.reshape(1,-1).T})
# every 1000 iterations record progress
if (epoch+1)%100== 0:
t,s, c = sess.run([ total_return, sharpe, costfn], feed_dict={x: train_ins, y_: train_outs})#.reshape(1,-1).T})
t = np.mean(t)
s = np.mean(s)
print("Epoch:", '%04d' % (epoch+1), "cost=",c, "total return=", "{:.9f}".format(t),
"sharpe=", "{:.9f}".format(s))
#print(t)
In [7]:
# in sample results
#init = tf.initialize_all_variables()
#sess.run(init)
d, t = sess.run([daily_returns, total_return], feed_dict={x: train_ins, y_: train_outs})
In [8]:
# equity curve
for i in range(5):
plot(np.cumprod(d[:,[i]]+1))
In [9]:
#out of sample results
d, t = sess.run([daily_returns, total_return], feed_dict={x: test_ins, y_: test_outs})
In [10]:
#out of sample results
for i in range(5):
plot(np.cumprod(d[:,[i]]+1))
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: