Introduction to the R Programming Language

(Not a statistics program for pirates.)

Welcome to R! One of the world's most popular data analysis languages that boasts a staggeringly large number of user-created packages (12126 as of last night). CRAN, the central R package repository, requires that all packages be fully documented and that they work in the most current version of R.

R is an open source, object-oriented language with its source code written almost entirely in C. It functions in many similar ways to Python. As you can see, it also works with Jupyter Notebooks.

You can also run R in the terminal, via its own application, or through an IDE like R-Studio.

In this class, I'd like to give you an introduction to the fundamentals of R, before quickly moving on to doing some Bayesian data analysis.

We're going to be using a couple of packages throughout this notebook. Please run the commands below at your earliest convenience.


In [ ]:
install.packages("LaplacesDemon")
install.packages("magicaxis")
library(LaplacesDemon)
library(magicaxis)

Fundamentals of R.

R is a fully vectorized language, and supports many different data structures and types; including (but not limited to):

  • vectors (including single scalar elements)
  • matrices (2D structures of the same numeric type; i.e. integer, double, etc.)
  • data frames (2D structures where columns can be different types)
  • lists (ordered collections of objects, which can contain an arbitrary number of other data structures).

As you might expect, R supports integers, doubles (singles are automatically stored as doubles in R), strings, Boolean logic, and factors (categories of data, i.e. hair color ('brown', 'red', etc.).

Very basics.

There is no type assignment necessary in R. You can just do this:


In [38]:
a = 10
a = a + 2
a = a^2
a = a*10 + sqrt(a) + a^(1.3) - 1/a
a


2091.53824961336

Vectors, matrices & data frames


In [37]:
c(1,2,3,4)
c("fee","fi","fo","fum")


  1. 1
  2. 2
  3. 3
  4. 4
  1. 'fee'
  2. 'fi'
  3. 'fo'
  4. 'fum'

In [48]:
foo1 <- c(1,2,3,4)
foo2 = c(5:8)
foo3 = seq(1,10,by=2) # Do ?seq to see more.

In [5]:
foo1; foo2; foo3


  1. 1
  2. 2
  3. 3
  4. 4
  1. 5
  2. 6
  3. 7
  4. 8
  1. 1
  2. 3
  3. 5
  4. 7
  5. 9

Vector programming in R is very straightforward.


In [3]:
b = c(1:10)
print(b)
for(i in 1:10){
    b[i] = b[i] * 10
}
print(b)


 [1]  1  2  3  4  5  6  7  8  9 10
 [1]  10  20  30  40  50  60  70  80  90 100

In [5]:
b = c(1:10)
print(b)
b = b*10
print(b)


 [1]  1  2  3  4  5  6  7  8  9 10
 [1]  10  20  30  40  50  60  70  80  90 100

In [10]:
1:10 * c(1,2)^2


  1. 1
  2. 8
  3. 3
  4. 16
  5. 5
  6. 24
  7. 7
  8. 32
  9. 9
  10. 40

In [11]:
mat1 = matrix(data=1:9,nrow=3)
mat1


147
258
369

The function arg() will tell you all the arguments for another function. To call up the documentation for any function or command, use ?.


In [40]:
args(matrix)


function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL) 
NULL

In [44]:
?matrix

Matrix operations are built in.


In [22]:
mat1 * 1:3
mat1 %*% 1:3


1 4 7
4 1016
9 1827
30
36
42

In [23]:
mat2 = cbind(c(1,2,3),c(4,5,6),c(7,8,9))
mat1 %*% mat2


30 66 102
36 81 126
42 96 150

In [24]:
eigen(mat1)


eigen() decomposition
$values
[1]  1.611684e+01 -1.116844e+00 -5.700691e-16

$vectors
           [,1]       [,2]       [,3]
[1,] -0.4645473 -0.8829060  0.4082483
[2,] -0.5707955 -0.2395204 -0.8164966
[3,] -0.6770438  0.4038651  0.4082483

R has a number of built in data sets, which can be extremely useful when exploring the language for the first time. For today, we'll be using iris. See more with ?iris.


In [33]:
iris


Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
5.4 3.7 1.5 0.2 setosa
4.8 3.4 1.6 0.2 setosa
4.8 3.0 1.4 0.1 setosa
4.3 3.0 1.1 0.1 setosa
5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 3.8 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa
5.4 3.4 1.7 0.2 setosa
5.1 3.7 1.5 0.4 setosa
4.6 3.6 1.0 0.2 setosa
5.1 3.3 1.7 0.5 setosa
4.8 3.4 1.9 0.2 setosa
5.0 3.0 1.6 0.2 setosa
5.0 3.4 1.6 0.4 setosa
5.2 3.5 1.5 0.2 setosa
5.2 3.4 1.4 0.2 setosa
4.7 3.2 1.6 0.2 setosa
6.9 3.2 5.7 2.3 virginica
5.6 2.8 4.9 2.0 virginica
7.7 2.8 6.7 2.0 virginica
6.3 2.7 4.9 1.8 virginica
6.7 3.3 5.7 2.1 virginica
7.2 3.2 6.0 1.8 virginica
6.2 2.8 4.8 1.8 virginica
6.1 3.0 4.9 1.8 virginica
6.4 2.8 5.6 2.1 virginica
7.2 3.0 5.8 1.6 virginica
7.4 2.8 6.1 1.9 virginica
7.9 3.8 6.4 2.0 virginica
6.4 2.8 5.6 2.2 virginica
6.3 2.8 5.1 1.5 virginica
6.1 2.6 5.6 1.4 virginica
7.7 3.0 6.1 2.3 virginica
6.3 3.4 5.6 2.4 virginica
6.4 3.1 5.5 1.8 virginica
6.0 3.0 4.8 1.8 virginica
6.9 3.1 5.4 2.1 virginica
6.7 3.1 5.6 2.4 virginica
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
6.7 3.3 5.7 2.5 virginica
6.7 3.0 5.2 2.3 virginica
6.3 2.5 5.0 1.9 virginica
6.5 3.0 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica

This is an example of a data frame, which is perhaps the most common data type you'll be using in R. Let's take a moment to familiarize ourselves with data frames.

To get a quantitative overview of the contents of a data frame (or, indeed, any other data type), use the summary() function. str() on the other hand, will tell you about the structure of a data type.


In [36]:
summary(iris)


  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
 Median :5.800   Median :3.000   Median :4.350   Median :1.300  
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
       Species  
 setosa    :50  
 versicolor:50  
 virginica :50  
                
                
                

In [37]:
str(iris)


'data.frame':	150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

Square brackets [] are used to point to individual columns, rows, or cells of a data frame. data[i,j] will point to the element in the ith row and jth column. For a vector, vector[j] will point to the jth element of that vector.


In [38]:
iris[1,2]


3.5

If you simply want to pull out an entire row or column, use data[i,] or data[,j]. Alternatively, you can use the $ symbol to refer to a column by its name. You can also mix and match as you like; i.e. data$foo[3].


In [46]:
iris[,3]
iris[c(5,7),]


  1. 1.4
  2. 1.4
  3. 1.3
  4. 1.5
  5. 1.4
  6. 1.7
  7. 1.4
  8. 1.5
  9. 1.4
  10. 1.5
  11. 1.5
  12. 1.6
  13. 1.4
  14. 1.1
  15. 1.2
  16. 1.5
  17. 1.3
  18. 1.4
  19. 1.7
  20. 1.5
  21. 1.7
  22. 1.5
  23. 1
  24. 1.7
  25. 1.9
  26. 1.6
  27. 1.6
  28. 1.5
  29. 1.4
  30. 1.6
  31. 1.6
  32. 1.5
  33. 1.5
  34. 1.4
  35. 1.5
  36. 1.2
  37. 1.3
  38. 1.4
  39. 1.3
  40. 1.5
  41. 1.3
  42. 1.3
  43. 1.3
  44. 1.6
  45. 1.9
  46. 1.4
  47. 1.6
  48. 1.4
  49. 1.5
  50. 1.4
  51. 4.7
  52. 4.5
  53. 4.9
  54. 4
  55. 4.6
  56. 4.5
  57. 4.7
  58. 3.3
  59. 4.6
  60. 3.9
  61. 3.5
  62. 4.2
  63. 4
  64. 4.7
  65. 3.6
  66. 4.4
  67. 4.5
  68. 4.1
  69. 4.5
  70. 3.9
  71. 4.8
  72. 4
  73. 4.9
  74. 4.7
  75. 4.3
  76. 4.4
  77. 4.8
  78. 5
  79. 4.5
  80. 3.5
  81. 3.8
  82. 3.7
  83. 3.9
  84. 5.1
  85. 4.5
  86. 4.5
  87. 4.7
  88. 4.4
  89. 4.1
  90. 4
  91. 4.4
  92. 4.6
  93. 4
  94. 3.3
  95. 4.2
  96. 4.2
  97. 4.2
  98. 4.3
  99. 3
  100. 4.1
  101. 6
  102. 5.1
  103. 5.9
  104. 5.6
  105. 5.8
  106. 6.6
  107. 4.5
  108. 6.3
  109. 5.8
  110. 6.1
  111. 5.1
  112. 5.3
  113. 5.5
  114. 5
  115. 5.1
  116. 5.3
  117. 5.5
  118. 6.7
  119. 6.9
  120. 5
  121. 5.7
  122. 4.9
  123. 6.7
  124. 4.9
  125. 5.7
  126. 6
  127. 4.8
  128. 4.9
  129. 5.6
  130. 5.8
  131. 6.1
  132. 6.4
  133. 5.6
  134. 5.1
  135. 5.6
  136. 6.1
  137. 5.6
  138. 5.5
  139. 4.8
  140. 5.4
  141. 5.6
  142. 5.1
  143. 5.1
  144. 5.9
  145. 5.7
  146. 5.2
  147. 5
  148. 5.2
  149. 5.4
  150. 5.1
Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
55.0 3.6 1.4 0.2 setosa
74.6 3.4 1.4 0.3 setosa

In [42]:
colnames(iris)
iris$Species


  1. 'Sepal.Length'
  2. 'Sepal.Width'
  3. 'Petal.Length'
  4. 'Petal.Width'
  5. 'Species'
  1. setosa
  2. setosa
  3. setosa
  4. setosa
  5. setosa
  6. setosa
  7. setosa
  8. setosa
  9. setosa
  10. setosa
  11. setosa
  12. setosa
  13. setosa
  14. setosa
  15. setosa
  16. setosa
  17. setosa
  18. setosa
  19. setosa
  20. setosa
  21. setosa
  22. setosa
  23. setosa
  24. setosa
  25. setosa
  26. setosa
  27. setosa
  28. setosa
  29. setosa
  30. setosa
  31. setosa
  32. setosa
  33. setosa
  34. setosa
  35. setosa
  36. setosa
  37. setosa
  38. setosa
  39. setosa
  40. setosa
  41. setosa
  42. setosa
  43. setosa
  44. setosa
  45. setosa
  46. setosa
  47. setosa
  48. setosa
  49. setosa
  50. setosa
  51. versicolor
  52. versicolor
  53. versicolor
  54. versicolor
  55. versicolor
  56. versicolor
  57. versicolor
  58. versicolor
  59. versicolor
  60. versicolor
  61. versicolor
  62. versicolor
  63. versicolor
  64. versicolor
  65. versicolor
  66. versicolor
  67. versicolor
  68. versicolor
  69. versicolor
  70. versicolor
  71. versicolor
  72. versicolor
  73. versicolor
  74. versicolor
  75. versicolor
  76. versicolor
  77. versicolor
  78. versicolor
  79. versicolor
  80. versicolor
  81. versicolor
  82. versicolor
  83. versicolor
  84. versicolor
  85. versicolor
  86. versicolor
  87. versicolor
  88. versicolor
  89. versicolor
  90. versicolor
  91. versicolor
  92. versicolor
  93. versicolor
  94. versicolor
  95. versicolor
  96. versicolor
  97. versicolor
  98. versicolor
  99. versicolor
  100. versicolor
  101. virginica
  102. virginica
  103. virginica
  104. virginica
  105. virginica
  106. virginica
  107. virginica
  108. virginica
  109. virginica
  110. virginica
  111. virginica
  112. virginica
  113. virginica
  114. virginica
  115. virginica
  116. virginica
  117. virginica
  118. virginica
  119. virginica
  120. virginica
  121. virginica
  122. virginica
  123. virginica
  124. virginica
  125. virginica
  126. virginica
  127. virginica
  128. virginica
  129. virginica
  130. virginica
  131. virginica
  132. virginica
  133. virginica
  134. virginica
  135. virginica
  136. virginica
  137. virginica
  138. virginica
  139. virginica
  140. virginica
  141. virginica
  142. virginica
  143. virginica
  144. virginica
  145. virginica
  146. virginica
  147. virginica
  148. virginica
  149. virginica
  150. virginica

Mix and match as you like!


In [43]:
iris$Species[5]


setosa

The which() function is used to identify specific subsets of data. Uses standard Boolean logic, i.e. which(data$foo >= 2 & data$foo2 <= 3).

Quick problem 1:

a) Find the subset of iris flowers with a sepal length greater than 4.3cm, and petal length less than 1.2cm.

b) What species do these correspond to?


In [44]:
which(iris$Sepal.Length >= 4.3 & iris$Petal.Length <= 1.2)


  1. 14
  2. 15
  3. 23
  4. 36

In [45]:
iris[which(iris$Sepal.Length >= 4.3 & iris$Petal.Length <= 1.2),]


Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
144.3 3.0 1.1 0.1 setosa
155.8 4.0 1.2 0.2 setosa
234.6 3.6 1.0 0.2 setosa
365.0 3.2 1.2 0.2 setosa

Lists

Lists are highly flexible, but also the most complicated structures in R.


In [49]:
list1 = list(a=a, iris = iris[1:10,], vec=foo3)
list1


$a
2091.53824961336
$iris
Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa
$vec
  1. 1
  2. 3
  3. 5
  4. 7
  5. 9

In [50]:
list1[2]


$iris =
Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa

In [51]:
list1[[2]]


Sepal.LengthSepal.WidthPetal.LengthPetal.WidthSpecies
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa
4.6 3.4 1.4 0.3 setosa
5.0 3.4 1.5 0.2 setosa
4.4 2.9 1.4 0.2 setosa
4.9 3.1 1.5 0.1 setosa

In [52]:
list1$vec


  1. 1
  2. 3
  3. 5
  4. 7
  5. 9

In [55]:
list1['a']


$a = 2091.53824961336

In [56]:
list1[['a']]


2091.53824961336

Lists can get really complicated, and be endlessly recursive -- any element of a list can be another list. Lists can be really useful to keep your workspace tidy; for example, if the output of a function is several different matrices or data frames, they can all be bundled into a single list.

Functions

I've already showed some examples pre-defined R functions that perform certain tasks. R lets you define your own functions as you like.


In [5]:
newFunc <- function(x=1, power = 2, addon = 10){
    x ^ power + addon
}
newFunc()
newFunc(1:10)
newFunc(pow = 3, x=23:30)
newFunc(1:10,1:2,1:5)


11
  1. 11
  2. 14
  3. 19
  4. 26
  5. 35
  6. 46
  7. 59
  8. 74
  9. 91
  10. 110
  1. 12177
  2. 13834
  3. 15635
  4. 17586
  5. 19693
  6. 21962
  7. 24399
  8. 27010
  1. 2
  2. 6
  3. 6
  4. 20
  5. 10
  6. 37
  7. 9
  8. 67
  9. 13
  10. 105

In [6]:
newFunc


function (x = 1, power = 2, addon = 10) 
{
    x^power + addon
}

Plotting

Plotting is probably my favorite thing to do in R. Even the default plotting packages look decent; but with a little bit of extra work and customization, you can quickly and easily make publication-ready figures on the fly.


In [1]:
plot(1:10,1:10)
plot(runif(100),runif(100),pch=19, xlim=c(-1,2))



In [8]:
plot(sin,col='red')



In [10]:
magplot(1:1e3, newFunc(1:1e3),log='y',type='l')
legend('bottomright',legend='a line', lty=1)


Quick problem 2:

Write your own function, and plot it using the curve() function.

Hint: Remember that you can look up the documentation for any function using ?functionName.


In [9]:
myFunc <- function(x,a=1,b=0,c=1){
    a*exp(-(((x-b)^2)/(2*c^2)))
}
curve(myFunc,from=-5,to=5)


Quick problem 3:

Go back to the iris data set, and plot a histogram of all the sepal lengths for the setosa species.

Default histograms in R are probably the worst example of 'out of the box' plotting that the language can do. I prefer convolving my data with a kernel of fixed bandwidth, and plotting the PDF of that instead. You can do all that with the density() function. Give it a shot!

Try displaying both the PDF and the histogram on the same plot.

Hint: Remember to use type='l'!


In [40]:
plotDat = iris[which(iris$Species == 'setosa'),'Sepal.Length']
hist(plotDat,freq=F,ylim=c(0,1.5),xlab="Setosa sepal lengths",main="",axes=F,xlim=c(4,6))
myDens = density(iris[which(iris$Species == 'setosa'),'Sepal.Length'],bw=0.3/sqrt(12))
points(myDens$x,myDens$y,type='l',col='red')
magaxis(1:4)


Probability distributions

These are directly built into R. Uniform, normal, chi-squared, binomial, Poisson, all are built into base R. Do ?Distributions to see the full available list.

As a rule of thumb, the following functions interact with these distributions:

  • dDistr gives the instantaneous density at a value.
  • pDistr gives the integrated probability up to a value.
  • qDistr gives the value at an integrated probability (i.e. a quantile).
  • rDistr randomly samples the PDF to generate mock data. This is the one you will likely use most.

In [27]:
magplot(dnorm,xlim=c(-5,5))



In [29]:
magplot(pnorm,xlim=c(-5,5))



In [31]:
magplot(qnorm,xlim=c(0,1))



In [32]:
hist(rnorm(1E5))


Problem 4:

Create a function in R to compute the x and y coordinates of an ellipse, just as in the previous problem set.


In [39]:
ellipsePoints <- function(x, y, a, b, angle, res=100){
	
	segment = c(0,2*pi)

	z = seq(segment[1],segment[2],length.out=res)
	xx = a * cos(z)
	yy = b * sin(z)

	alpha = atan2(yy,xx)
	rad = sqrt(xx^2 + yy^2)

	xp = rad*cos(alpha + angle) + x
	yp = rad*sin(alpha + angle) + y

	plot(xp,yp)

}

ellipsePoints(1,2,3,0.3,sqrt(2))


Bayesian statistics in R.

Let's look at a common problem in observational astrophysics -- you're putting together a luminosity function based on some galaxy survey data, and have zero counts in a bin. What is the most likely value of $\lambda$ for the underlying Possion distribution that generated this?

$\lambda$ may well be nonzero...


In [6]:
plot.new();plot.window(c(0,20),c(0,1))
magaxis(xlab='k',ylab='P(X = k)',side=1:4)
for(i in 1:10){
lines(0:20,dpois(0:20,i-1),col=rainbow(10,end=2/3)[i])
points(0:20,dpois(0:20,i-1),col=rainbow(10,end=2/3)[i])}
legend('topright',legend=paste('Lambda =',0:9),col=rainbow(10,end=2/3),lty=1,pch=1,bty='n')


In Bayesian statistics, the prior $p(\theta)$ is the probability of the model based on prior knowledge of how the input parameters might be distributed. In this case, the input parameter is just $\lambda$.

In this example, we have no prior knowledge: so our prior for $\lambda$ is a uniform distribution from 0 to $\infty$. So let's compute $p( y = 0, \theta)$ for all possible $\lambda$. This goes to 0 quickly, so we can just stop at $\lambda = 5.$


In [7]:
xval = seq(0, 5, length.out=1000)
magplot(xval, dpois(0, xval), type='l',col='red',xlab=expression(lambda),ylab='PDF')


Bayesian problems generally require some data, a likelihood model, and some way of producing a posterior distribution.


In [3]:
Data = list(data = 0, mon.names = '', parm.names = 'lambda', N = 1)
Model = function(parm, Data){
    parm = interval(parm,0,100)
    val.prior = log(dunif(parm,0,100))
    LL = log(dpois(Data$data,parm))
    LP = LL + val.prior
    Modelout = list(LP=LP, Dev=2*LL, Monitor = 1, yhat=1, parm=parm)
}

It is usually not easy to calculate the posterior directly, so we need a scheme that can integrate the posterior likelihood space in a manner that reflects the parameter distributions.

If we choose a value x for λ, and compare that posterior likelihood to another value for λ (x+dx), the ratio of likelihoods (the BF) tells us the relative densities of the posterior PDF.

To walk through the posterior space we can do the following:

  • If the likelihood at λ(x+dx) is higher than λ(x) we update the posterior.
  • If the likelihood at λ(x+dx) is lower than λ(x) we accept it if a random number between 0 and the likelihood at λ(x) is less than the likelihood at λ(x+dx).

If we keep a chain of all posterior values, the PDF of this chain will reflect the posterior likelihood distribution.

This is a Metropolis-Hastings algorithm.


In [4]:
MH=function(Model,Data,start=1,iterations=1e4,thin=100,step=1,burn=0.1){
    posterior={}
    mod=Model(start,Data)
    parm=mod$parm
    currentLP=mod$LP
    keep={} 
    for(i in 1:iterations){
        trial=parm+rnorm(1,sd=step)
        mod=Model(trial,Data)
        trial=mod$parm; newLP=mod$LP
        if(newLP>currentLP){
            parm=trial
            currentLP=newLP
            keep=c(keep,TRUE)
        }else{
            check=runif(1,0,exp(currentLP))<exp(newLP)
            if(check){
                parm=trial
                currentLP=newLP
                keep=c(keep,TRUE)
            }else{
                keep=c(keep,FALSE)
            }
        }

    if(i %% thin ==0){
        posterior=c(posterior,parm)
        }
    }
    posterior=posterior[1:length(posterior)>burn*length(posterior)] 
    return=list(posterior=posterior,acrate=length(which(keep))/iterations) 
}

In [8]:
testMH=MH(Model, Data, start=1, iterations=1e5, thin=100, step=5, burn=0.1)
magplot(density(testMH$posterior,kern='rect',bw=0.1/sqrt(12)),xlab='Lamba',ylab='Density')
lines(xval,dpois(0,xval),col='red')


Let's examine an astrophysical problem!

The Schechter function is a parametrisation of how galaxies are distributed per unit volume in the Universe. It's an excellent fit to luminosity functions. It generally carries the form:

$dN = \theta(L)dL = (\theta^* / L^*) (L / L*)^{\alpha} \exp(-L/L^*)dL$

Let's generate a mock Schechter function, and then see how well we can recover its parameters. We'll do the generation in a slightly odd way, by creating a random pointing galaxy data in order to use a Monte-Carlo accept-reject technique later.


In [9]:
schec=function (m, ns, ms, alpha){ #This is the famous Schechter function
0.4*log(10)*ns*exp(0.4*log(10)*(alpha+1)*(ms-m)-exp(0.4*log(10)*(ms-m)))}

genLF=function(N, ms= -20, alpha= -1, mb= -25, mf= -14){
    maxval = max(schec(seq(mb, mf, by = 0.01), ns = 1, ms = ms, alpha = alpha))
    temp = cbind(runif(N, mb, mf), runif(N, 0, maxval + maxval * 0.01))
    temp = cbind(temp, schec(temp[, 1], ns = 1, ms = ms, alpha = alpha))
    mags = temp[temp[, 2] < temp[, 3], 1]
    gens = 2 * ceiling(N/length(mags)) * N
    temp = cbind(runif(gens, mb, mf), runif(gens, 0, maxval + maxval * 0.01))
    temp = cbind(temp, schec(temp[, 1], ns = 1, ms = ms, alpha = alpha))
    mags = c(mags, temp[temp[, 2] < temp[, 3], 1])
    mags = mags[1:N]
    return(mags)
    }

Data=list(data=genLF(1e4,ms=-20.5,alpha=-1.2),
mon.names='ns',parm.names=c('ms','alpha'),N=1e4)

magplot(density(Data$data,kern='rect',bw=0.2/
sqrt(12)),log='y',ylim=c(1e-4,1),xlab='Magnitude',ylab='Density')

ns=1/integrate(schec,-25,-14,ns=1,ms=-20.5,alpha=-1.2)$value

lines(seq(-24,-14,len=1e3),schec(seq(-24,-14,len=1e3),
ns=ns,ms=-20.5,alpha=-1.2),col='blue')


Warning message in xy.coords(x, y, xlabel, ylabel, log):
“6 y values <= 0 omitted from logarithmic plot”

In [18]:
Model=function(parm,Data){
ns=1/integrate(schec,-25,-14,ns=1,ms=parm[1],alpha=parm[2])$value
val.prior=dunif(parm[1],-30,-10,log=TRUE)+dunif(parm[2],-3,1,log=TRUE)
LL=sum(log(schec(Data$data,ns=ns,ms=parm[1],alpha=parm[2])))
LP=LL+val.prior
Modelout=list(LP=LP,Dev=2*LL,Monitor=ns,yhat=1,parm=parm)}

Let's use a package called Laplace's Demon to do our fit. This package is named after a hypothetical creature that could potentially intuit everything there is to know about the Universe, provided it knows all the properties of the Universe.

While that doesn't exist, this package does! And it's a great bundle of common Bayesian tools, including many MCMC algorithms.


In [20]:
library(LaplacesDemon)
FitLF=LaplacesDemon(Model, Data, Initial.Values=c(-20,-1), Algorithm='HARM', Iterations=1e5)


Laplace's Demon was called on Sun Jan 21 23:36:15 2018

Performing initial checks...
Algorithm: Hit-And-Run Metropolis 

Laplace's Demon is beginning to update...
Iteration: 100Iteration: 100,   Proposal: Multivariate,   LP: -18174.7
Iteration: 200Iteration: 200,   Proposal: Multivariate,   LP: -18168.1
Iteration: 300Iteration: 300,   Proposal: Multivariate,   LP: -18168.1
Iteration: 400Iteration: 400,   Proposal: Multivariate,   LP: -18167.9
Iteration: 500Iteration: 500,   Proposal: Multivariate,   LP: -18168.1
Iteration: 600Iteration: 600,   Proposal: Multivariate,   LP: -18167.1
Iteration: 700Iteration: 700,   Proposal: Multivariate,   LP: -18167.4
Iteration: 800Iteration: 800,   Proposal: Multivariate,   LP: -18167.3
Iteration: 900Iteration: 900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 1000Iteration: 1000,   Proposal: Multivariate,   LP: -18167.4
Iteration: 1100Iteration: 1100,   Proposal: Multivariate,   LP: -18167.4
Iteration: 1200Iteration: 1200,   Proposal: Multivariate,   LP: -18167.2
Iteration: 1300Iteration: 1300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 1400Iteration: 1400,   Proposal: Multivariate,   LP: -18167.5
Iteration: 1500Iteration: 1500,   Proposal: Multivariate,   LP: -18167.5
Iteration: 1600Iteration: 1600,   Proposal: Multivariate,   LP: -18167.6
Iteration: 1700Iteration: 1700,   Proposal: Multivariate,   LP: -18168
Iteration: 1800Iteration: 1800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 1900Iteration: 1900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 2000Iteration: 2000,   Proposal: Multivariate,   LP: -18166.9
Iteration: 2100Iteration: 2100,   Proposal: Multivariate,   LP: -18168.4
Iteration: 2200Iteration: 2200,   Proposal: Multivariate,   LP: -18167.8
Iteration: 2300Iteration: 2300,   Proposal: Multivariate,   LP: -18167.5
Iteration: 2400Iteration: 2400,   Proposal: Multivariate,   LP: -18167.8
Iteration: 2500Iteration: 2500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 2600Iteration: 2600,   Proposal: Multivariate,   LP: -18168.6
Iteration: 2700Iteration: 2700,   Proposal: Multivariate,   LP: -18168.5
Iteration: 2800Iteration: 2800,   Proposal: Multivariate,   LP: -18167.6
Iteration: 2900Iteration: 2900,   Proposal: Multivariate,   LP: -18167.7
Iteration: 3000Iteration: 3000,   Proposal: Multivariate,   LP: -18167.6
Iteration: 3100Iteration: 3100,   Proposal: Multivariate,   LP: -18167.6
Iteration: 3200Iteration: 3200,   Proposal: Multivariate,   LP: -18167.6
Iteration: 3300Iteration: 3300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 3400Iteration: 3400,   Proposal: Multivariate,   LP: -18172.6
Iteration: 3500Iteration: 3500,   Proposal: Multivariate,   LP: -18167.4
Iteration: 3600Iteration: 3600,   Proposal: Multivariate,   LP: -18167.4
Iteration: 3700Iteration: 3700,   Proposal: Multivariate,   LP: -18167.9
Iteration: 3800Iteration: 3800,   Proposal: Multivariate,   LP: -18167.3
Iteration: 3900Iteration: 3900,   Proposal: Multivariate,   LP: -18167.5
Iteration: 4000Iteration: 4000,   Proposal: Multivariate,   LP: -18169.1
Iteration: 4100Iteration: 4100,   Proposal: Multivariate,   LP: -18167.7
Iteration: 4200Iteration: 4200,   Proposal: Multivariate,   LP: -18168.3
Iteration: 4300Iteration: 4300,   Proposal: Multivariate,   LP: -18168.4
Iteration: 4400Iteration: 4400,   Proposal: Multivariate,   LP: -18167.7
Iteration: 4500Iteration: 4500,   Proposal: Multivariate,   LP: -18167
Iteration: 4600Iteration: 4600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 4700Iteration: 4700,   Proposal: Multivariate,   LP: -18167.6
Iteration: 4800Iteration: 4800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 4900Iteration: 4900,   Proposal: Multivariate,   LP: -18167.2
Iteration: 5000Iteration: 5000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 5100Iteration: 5100,   Proposal: Multivariate,   LP: -18166.9
Iteration: 5200Iteration: 5200,   Proposal: Multivariate,   LP: -18166.8
Iteration: 5300Iteration: 5300,   Proposal: Multivariate,   LP: -18167
Iteration: 5400Iteration: 5400,   Proposal: Multivariate,   LP: -18167.8
Iteration: 5500Iteration: 5500,   Proposal: Multivariate,   LP: -18167.8
Iteration: 5600Iteration: 5600,   Proposal: Multivariate,   LP: -18167.8
Iteration: 5700Iteration: 5700,   Proposal: Multivariate,   LP: -18169.6
Iteration: 5800Iteration: 5800,   Proposal: Multivariate,   LP: -18168
Iteration: 5900Iteration: 5900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 6000Iteration: 6000,   Proposal: Multivariate,   LP: -18169.5
Iteration: 6100Iteration: 6100,   Proposal: Multivariate,   LP: -18168.6
Iteration: 6200Iteration: 6200,   Proposal: Multivariate,   LP: -18169.4
Iteration: 6300Iteration: 6300,   Proposal: Multivariate,   LP: -18167.9
Iteration: 6400Iteration: 6400,   Proposal: Multivariate,   LP: -18168.7
Iteration: 6500Iteration: 6500,   Proposal: Multivariate,   LP: -18168
Iteration: 6600Iteration: 6600,   Proposal: Multivariate,   LP: -18169.6
Iteration: 6700Iteration: 6700,   Proposal: Multivariate,   LP: -18168.9
Iteration: 6800Iteration: 6800,   Proposal: Multivariate,   LP: -18169.4
Iteration: 6900Iteration: 6900,   Proposal: Multivariate,   LP: -18169.4
Iteration: 7000Iteration: 7000,   Proposal: Multivariate,   LP: -18170
Iteration: 7100Iteration: 7100,   Proposal: Multivariate,   LP: -18170.5
Iteration: 7200Iteration: 7200,   Proposal: Multivariate,   LP: -18168.2
Iteration: 7300Iteration: 7300,   Proposal: Multivariate,   LP: -18167.4
Iteration: 7400Iteration: 7400,   Proposal: Multivariate,   LP: -18168.3
Iteration: 7500Iteration: 7500,   Proposal: Multivariate,   LP: -18167.8
Iteration: 7600Iteration: 7600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 7700Iteration: 7700,   Proposal: Multivariate,   LP: -18167.2
Iteration: 7800Iteration: 7800,   Proposal: Multivariate,   LP: -18167.6
Iteration: 7900Iteration: 7900,   Proposal: Multivariate,   LP: -18167.5
Iteration: 8000Iteration: 8000,   Proposal: Multivariate,   LP: -18167.5
Iteration: 8100Iteration: 8100,   Proposal: Multivariate,   LP: -18167.2
Iteration: 8200Iteration: 8200,   Proposal: Multivariate,   LP: -18167.5
Iteration: 8300Iteration: 8300,   Proposal: Multivariate,   LP: -18169.5
Iteration: 8400Iteration: 8400,   Proposal: Multivariate,   LP: -18169.5
Iteration: 8500Iteration: 8500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 8600Iteration: 8600,   Proposal: Multivariate,   LP: -18167.9
Iteration: 8700Iteration: 8700,   Proposal: Multivariate,   LP: -18167.1
Iteration: 8800Iteration: 8800,   Proposal: Multivariate,   LP: -18167.1
Iteration: 8900Iteration: 8900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 9000Iteration: 9000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 9100Iteration: 9100,   Proposal: Multivariate,   LP: -18167.8
Iteration: 9200Iteration: 9200,   Proposal: Multivariate,   LP: -18167.4
Iteration: 9300Iteration: 9300,   Proposal: Multivariate,   LP: -18167.8
Iteration: 9400Iteration: 9400,   Proposal: Multivariate,   LP: -18167.7
Iteration: 9500Iteration: 9500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 9600Iteration: 9600,   Proposal: Multivariate,   LP: -18167.7
Iteration: 9700Iteration: 9700,   Proposal: Multivariate,   LP: -18168.7
Iteration: 9800Iteration: 9800,   Proposal: Multivariate,   LP: -18167.1
Iteration: 9900Iteration: 9900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 10000Iteration: 10000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 10100Iteration: 10100,   Proposal: Multivariate,   LP: -18167.7
Iteration: 10200Iteration: 10200,   Proposal: Multivariate,   LP: -18167.9
Iteration: 10300Iteration: 10300,   Proposal: Multivariate,   LP: -18168.6
Iteration: 10400Iteration: 10400,   Proposal: Multivariate,   LP: -18167.1
Iteration: 10500Iteration: 10500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 10600Iteration: 10600,   Proposal: Multivariate,   LP: -18168.3
Iteration: 10700Iteration: 10700,   Proposal: Multivariate,   LP: -18169.2
Iteration: 10800Iteration: 10800,   Proposal: Multivariate,   LP: -18167
Iteration: 10900Iteration: 10900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 11000Iteration: 11000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 11100Iteration: 11100,   Proposal: Multivariate,   LP: -18167
Iteration: 11200Iteration: 11200,   Proposal: Multivariate,   LP: -18167.9
Iteration: 11300Iteration: 11300,   Proposal: Multivariate,   LP: -18167.9
Iteration: 11400Iteration: 11400,   Proposal: Multivariate,   LP: -18167.7
Iteration: 11500Iteration: 11500,   Proposal: Multivariate,   LP: -18169
Iteration: 11600Iteration: 11600,   Proposal: Multivariate,   LP: -18169
Iteration: 11700Iteration: 11700,   Proposal: Multivariate,   LP: -18168.5
Iteration: 11800Iteration: 11800,   Proposal: Multivariate,   LP: -18167.6
Iteration: 11900Iteration: 11900,   Proposal: Multivariate,   LP: -18167.8
Iteration: 12000Iteration: 12000,   Proposal: Multivariate,   LP: -18167.8
Iteration: 12100Iteration: 12100,   Proposal: Multivariate,   LP: -18168.5
Iteration: 12200Iteration: 12200,   Proposal: Multivariate,   LP: -18167.7
Iteration: 12300Iteration: 12300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 12400Iteration: 12400,   Proposal: Multivariate,   LP: -18167
Iteration: 12500Iteration: 12500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 12600Iteration: 12600,   Proposal: Multivariate,   LP: -18168.1
Iteration: 12700Iteration: 12700,   Proposal: Multivariate,   LP: -18167.8
Iteration: 12800Iteration: 12800,   Proposal: Multivariate,   LP: -18167.8
Iteration: 12900Iteration: 12900,   Proposal: Multivariate,   LP: -18168.3
Iteration: 13000Iteration: 13000,   Proposal: Multivariate,   LP: -18168.3
Iteration: 13100Iteration: 13100,   Proposal: Multivariate,   LP: -18166.9
Iteration: 13200Iteration: 13200,   Proposal: Multivariate,   LP: -18166.9
Iteration: 13300Iteration: 13300,   Proposal: Multivariate,   LP: -18166.9
Iteration: 13400Iteration: 13400,   Proposal: Multivariate,   LP: -18168.4
Iteration: 13500Iteration: 13500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 13600Iteration: 13600,   Proposal: Multivariate,   LP: -18167.3
Iteration: 13700Iteration: 13700,   Proposal: Multivariate,   LP: -18167
Iteration: 13800Iteration: 13800,   Proposal: Multivariate,   LP: -18168
Iteration: 13900Iteration: 13900,   Proposal: Multivariate,   LP: -18167.2
Iteration: 14000Iteration: 14000,   Proposal: Multivariate,   LP: -18168.5
Iteration: 14100Iteration: 14100,   Proposal: Multivariate,   LP: -18168.5
Iteration: 14200Iteration: 14200,   Proposal: Multivariate,   LP: -18168.4
Iteration: 14300Iteration: 14300,   Proposal: Multivariate,   LP: -18168.2
Iteration: 14400Iteration: 14400,   Proposal: Multivariate,   LP: -18168.8
Iteration: 14500Iteration: 14500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 14600Iteration: 14600,   Proposal: Multivariate,   LP: -18167
Iteration: 14700Iteration: 14700,   Proposal: Multivariate,   LP: -18167
Iteration: 14800Iteration: 14800,   Proposal: Multivariate,   LP: -18167.3
Iteration: 14900Iteration: 14900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 15000Iteration: 15000,   Proposal: Multivariate,   LP: -18167.9
Iteration: 15100Iteration: 15100,   Proposal: Multivariate,   LP: -18169.7
Iteration: 15200Iteration: 15200,   Proposal: Multivariate,   LP: -18169.9
Iteration: 15300Iteration: 15300,   Proposal: Multivariate,   LP: -18170
Iteration: 15400Iteration: 15400,   Proposal: Multivariate,   LP: -18167
Iteration: 15500Iteration: 15500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 15600Iteration: 15600,   Proposal: Multivariate,   LP: -18167.7
Iteration: 15700Iteration: 15700,   Proposal: Multivariate,   LP: -18168.3
Iteration: 15800Iteration: 15800,   Proposal: Multivariate,   LP: -18167.3
Iteration: 15900Iteration: 15900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 16000Iteration: 16000,   Proposal: Multivariate,   LP: -18167.3
Iteration: 16100Iteration: 16100,   Proposal: Multivariate,   LP: -18167.3
Iteration: 16200Iteration: 16200,   Proposal: Multivariate,   LP: -18167.5
Iteration: 16300Iteration: 16300,   Proposal: Multivariate,   LP: -18167.3
Iteration: 16400Iteration: 16400,   Proposal: Multivariate,   LP: -18168.4
Iteration: 16500Iteration: 16500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 16600Iteration: 16600,   Proposal: Multivariate,   LP: -18168
Iteration: 16700Iteration: 16700,   Proposal: Multivariate,   LP: -18170.3
Iteration: 16800Iteration: 16800,   Proposal: Multivariate,   LP: -18167.8
Iteration: 16900Iteration: 16900,   Proposal: Multivariate,   LP: -18169.8
Iteration: 17000Iteration: 17000,   Proposal: Multivariate,   LP: -18168.8
Iteration: 17100Iteration: 17100,   Proposal: Multivariate,   LP: -18169.6
Iteration: 17200Iteration: 17200,   Proposal: Multivariate,   LP: -18170.6
Iteration: 17300Iteration: 17300,   Proposal: Multivariate,   LP: -18170.7
Iteration: 17400Iteration: 17400,   Proposal: Multivariate,   LP: -18168.5
Iteration: 17500Iteration: 17500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 17600Iteration: 17600,   Proposal: Multivariate,   LP: -18169.3
Iteration: 17700Iteration: 17700,   Proposal: Multivariate,   LP: -18168.8
Iteration: 17800Iteration: 17800,   Proposal: Multivariate,   LP: -18167.4
Iteration: 17900Iteration: 17900,   Proposal: Multivariate,   LP: -18167.5
Iteration: 18000Iteration: 18000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 18100Iteration: 18100,   Proposal: Multivariate,   LP: -18169.3
Iteration: 18200Iteration: 18200,   Proposal: Multivariate,   LP: -18167.2
Iteration: 18300Iteration: 18300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 18400Iteration: 18400,   Proposal: Multivariate,   LP: -18167.8
Iteration: 18500Iteration: 18500,   Proposal: Multivariate,   LP: -18169.6
Iteration: 18600Iteration: 18600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 18700Iteration: 18700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 18800Iteration: 18800,   Proposal: Multivariate,   LP: -18168.8
Iteration: 18900Iteration: 18900,   Proposal: Multivariate,   LP: -18169.5
Iteration: 19000Iteration: 19000,   Proposal: Multivariate,   LP: -18169
Iteration: 19100Iteration: 19100,   Proposal: Multivariate,   LP: -18168.6
Iteration: 19200Iteration: 19200,   Proposal: Multivariate,   LP: -18168.1
Iteration: 19300Iteration: 19300,   Proposal: Multivariate,   LP: -18167.5
Iteration: 19400Iteration: 19400,   Proposal: Multivariate,   LP: -18168
Iteration: 19500Iteration: 19500,   Proposal: Multivariate,   LP: -18166.8
Iteration: 19600Iteration: 19600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 19700Iteration: 19700,   Proposal: Multivariate,   LP: -18167.3
Iteration: 19800Iteration: 19800,   Proposal: Multivariate,   LP: -18167.9
Iteration: 19900Iteration: 19900,   Proposal: Multivariate,   LP: -18169.1
Iteration: 20000Iteration: 20000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 20100Iteration: 20100,   Proposal: Multivariate,   LP: -18167.3
Iteration: 20200Iteration: 20200,   Proposal: Multivariate,   LP: -18167.2
Iteration: 20300Iteration: 20300,   Proposal: Multivariate,   LP: -18167.2
Iteration: 20400Iteration: 20400,   Proposal: Multivariate,   LP: -18167.8
Iteration: 20500Iteration: 20500,   Proposal: Multivariate,   LP: -18167.9
Iteration: 20600Iteration: 20600,   Proposal: Multivariate,   LP: -18167
Iteration: 20700Iteration: 20700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 20800Iteration: 20800,   Proposal: Multivariate,   LP: -18167.6
Iteration: 20900Iteration: 20900,   Proposal: Multivariate,   LP: -18167.6
Iteration: 21000Iteration: 21000,   Proposal: Multivariate,   LP: -18167.6
Iteration: 21100Iteration: 21100,   Proposal: Multivariate,   LP: -18168.4
Iteration: 21200Iteration: 21200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 21300Iteration: 21300,   Proposal: Multivariate,   LP: -18168
Iteration: 21400Iteration: 21400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 21500Iteration: 21500,   Proposal: Multivariate,   LP: -18168.1
Iteration: 21600Iteration: 21600,   Proposal: Multivariate,   LP: -18167
Iteration: 21700Iteration: 21700,   Proposal: Multivariate,   LP: -18167.3
Iteration: 21800Iteration: 21800,   Proposal: Multivariate,   LP: -18167.3
Iteration: 21900Iteration: 21900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 22000Iteration: 22000,   Proposal: Multivariate,   LP: -18169
Iteration: 22100Iteration: 22100,   Proposal: Multivariate,   LP: -18167.3
Iteration: 22200Iteration: 22200,   Proposal: Multivariate,   LP: -18167.4
Iteration: 22300Iteration: 22300,   Proposal: Multivariate,   LP: -18167.9
Iteration: 22400Iteration: 22400,   Proposal: Multivariate,   LP: -18167.9
Iteration: 22500Iteration: 22500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 22600Iteration: 22600,   Proposal: Multivariate,   LP: -18167.1
Iteration: 22700Iteration: 22700,   Proposal: Multivariate,   LP: -18167.7
Iteration: 22800Iteration: 22800,   Proposal: Multivariate,   LP: -18167.2
Iteration: 22900Iteration: 22900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 23000Iteration: 23000,   Proposal: Multivariate,   LP: -18167.4
Iteration: 23100Iteration: 23100,   Proposal: Multivariate,   LP: -18167.4
Iteration: 23200Iteration: 23200,   Proposal: Multivariate,   LP: -18167.4
Iteration: 23300Iteration: 23300,   Proposal: Multivariate,   LP: -18170.6
Iteration: 23400Iteration: 23400,   Proposal: Multivariate,   LP: -18171.3
Iteration: 23500Iteration: 23500,   Proposal: Multivariate,   LP: -18168.7
Iteration: 23600Iteration: 23600,   Proposal: Multivariate,   LP: -18167
Iteration: 23700Iteration: 23700,   Proposal: Multivariate,   LP: -18167.9
Iteration: 23800Iteration: 23800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 23900Iteration: 23900,   Proposal: Multivariate,   LP: -18167.2
Iteration: 24000Iteration: 24000,   Proposal: Multivariate,   LP: -18170.8
Iteration: 24100Iteration: 24100,   Proposal: Multivariate,   LP: -18167
Iteration: 24200Iteration: 24200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 24300Iteration: 24300,   Proposal: Multivariate,   LP: -18167
Iteration: 24400Iteration: 24400,   Proposal: Multivariate,   LP: -18167
Iteration: 24500Iteration: 24500,   Proposal: Multivariate,   LP: -18167.3
Iteration: 24600Iteration: 24600,   Proposal: Multivariate,   LP: -18169
Iteration: 24700Iteration: 24700,   Proposal: Multivariate,   LP: -18167.6
Iteration: 24800Iteration: 24800,   Proposal: Multivariate,   LP: -18168.3
Iteration: 24900Iteration: 24900,   Proposal: Multivariate,   LP: -18168.3
Iteration: 25000Iteration: 25000,   Proposal: Multivariate,   LP: -18167.5
Iteration: 25100Iteration: 25100,   Proposal: Multivariate,   LP: -18167.7
Iteration: 25200Iteration: 25200,   Proposal: Multivariate,   LP: -18167.8
Iteration: 25300Iteration: 25300,   Proposal: Multivariate,   LP: -18167.8
Iteration: 25400Iteration: 25400,   Proposal: Multivariate,   LP: -18167.6
Iteration: 25500Iteration: 25500,   Proposal: Multivariate,   LP: -18169.4
Iteration: 25600Iteration: 25600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 25700Iteration: 25700,   Proposal: Multivariate,   LP: -18167.8
Iteration: 25800Iteration: 25800,   Proposal: Multivariate,   LP: -18167.1
Iteration: 25900Iteration: 25900,   Proposal: Multivariate,   LP: -18168.8
Iteration: 26000Iteration: 26000,   Proposal: Multivariate,   LP: -18169
Iteration: 26100Iteration: 26100,   Proposal: Multivariate,   LP: -18166.8
Iteration: 26200Iteration: 26200,   Proposal: Multivariate,   LP: -18166.8
Iteration: 26300Iteration: 26300,   Proposal: Multivariate,   LP: -18166.8
Iteration: 26400Iteration: 26400,   Proposal: Multivariate,   LP: -18167.6
Iteration: 26500Iteration: 26500,   Proposal: Multivariate,   LP: -18167.3
Iteration: 26600Iteration: 26600,   Proposal: Multivariate,   LP: -18167.4
Iteration: 26700Iteration: 26700,   Proposal: Multivariate,   LP: -18169.7
Iteration: 26800Iteration: 26800,   Proposal: Multivariate,   LP: -18173.4
Iteration: 26900Iteration: 26900,   Proposal: Multivariate,   LP: -18168.5
Iteration: 27000Iteration: 27000,   Proposal: Multivariate,   LP: -18167.4
Iteration: 27100Iteration: 27100,   Proposal: Multivariate,   LP: -18167.7
Iteration: 27200Iteration: 27200,   Proposal: Multivariate,   LP: -18167.9
Iteration: 27300Iteration: 27300,   Proposal: Multivariate,   LP: -18168.2
Iteration: 27400Iteration: 27400,   Proposal: Multivariate,   LP: -18167.5
Iteration: 27500Iteration: 27500,   Proposal: Multivariate,   LP: -18168.1
Iteration: 27600Iteration: 27600,   Proposal: Multivariate,   LP: -18167.1
Iteration: 27700Iteration: 27700,   Proposal: Multivariate,   LP: -18167.2
Iteration: 27800Iteration: 27800,   Proposal: Multivariate,   LP: -18167
Iteration: 27900Iteration: 27900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 28000Iteration: 28000,   Proposal: Multivariate,   LP: -18169.8
Iteration: 28100Iteration: 28100,   Proposal: Multivariate,   LP: -18167.4
Iteration: 28200Iteration: 28200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 28300Iteration: 28300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 28400Iteration: 28400,   Proposal: Multivariate,   LP: -18169.2
Iteration: 28500Iteration: 28500,   Proposal: Multivariate,   LP: -18169.3
Iteration: 28600Iteration: 28600,   Proposal: Multivariate,   LP: -18168.2
Iteration: 28700Iteration: 28700,   Proposal: Multivariate,   LP: -18168.2
Iteration: 28800Iteration: 28800,   Proposal: Multivariate,   LP: -18168.8
Iteration: 28900Iteration: 28900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 29000Iteration: 29000,   Proposal: Multivariate,   LP: -18167.7
Iteration: 29100Iteration: 29100,   Proposal: Multivariate,   LP: -18167.6
Iteration: 29200Iteration: 29200,   Proposal: Multivariate,   LP: -18167.6
Iteration: 29300Iteration: 29300,   Proposal: Multivariate,   LP: -18168
Iteration: 29400Iteration: 29400,   Proposal: Multivariate,   LP: -18167.2
Iteration: 29500Iteration: 29500,   Proposal: Multivariate,   LP: -18170.8
Iteration: 29600Iteration: 29600,   Proposal: Multivariate,   LP: -18167.5
Iteration: 29700Iteration: 29700,   Proposal: Multivariate,   LP: -18167.5
Iteration: 29800Iteration: 29800,   Proposal: Multivariate,   LP: -18167.4
Iteration: 29900Iteration: 29900,   Proposal: Multivariate,   LP: -18167.8
Iteration: 30000Iteration: 30000,   Proposal: Multivariate,   LP: -18167.7
Iteration: 30100Iteration: 30100,   Proposal: Multivariate,   LP: -18167.6
Iteration: 30200Iteration: 30200,   Proposal: Multivariate,   LP: -18169.9
Iteration: 30300Iteration: 30300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 30400Iteration: 30400,   Proposal: Multivariate,   LP: -18167.6
Iteration: 30500Iteration: 30500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 30600Iteration: 30600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 30700Iteration: 30700,   Proposal: Multivariate,   LP: -18167.2
Iteration: 30800Iteration: 30800,   Proposal: Multivariate,   LP: -18169.1
Iteration: 30900Iteration: 30900,   Proposal: Multivariate,   LP: -18168.7
Iteration: 31000Iteration: 31000,   Proposal: Multivariate,   LP: -18167.3
Iteration: 31100Iteration: 31100,   Proposal: Multivariate,   LP: -18167.3
Iteration: 31200Iteration: 31200,   Proposal: Multivariate,   LP: -18166.8
Iteration: 31300Iteration: 31300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 31400Iteration: 31400,   Proposal: Multivariate,   LP: -18168.7
Iteration: 31500Iteration: 31500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 31600Iteration: 31600,   Proposal: Multivariate,   LP: -18167
Iteration: 31700Iteration: 31700,   Proposal: Multivariate,   LP: -18168.1
Iteration: 31800Iteration: 31800,   Proposal: Multivariate,   LP: -18167.9
Iteration: 31900Iteration: 31900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 32000Iteration: 32000,   Proposal: Multivariate,   LP: -18167.9
Iteration: 32100Iteration: 32100,   Proposal: Multivariate,   LP: -18167.9
Iteration: 32200Iteration: 32200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 32300Iteration: 32300,   Proposal: Multivariate,   LP: -18167
Iteration: 32400Iteration: 32400,   Proposal: Multivariate,   LP: -18167
Iteration: 32500Iteration: 32500,   Proposal: Multivariate,   LP: -18167
Iteration: 32600Iteration: 32600,   Proposal: Multivariate,   LP: -18167.1
Iteration: 32700Iteration: 32700,   Proposal: Multivariate,   LP: -18167.4
Iteration: 32800Iteration: 32800,   Proposal: Multivariate,   LP: -18167.4
Iteration: 32900Iteration: 32900,   Proposal: Multivariate,   LP: -18167.2
Iteration: 33000Iteration: 33000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 33100Iteration: 33100,   Proposal: Multivariate,   LP: -18167
Iteration: 33200Iteration: 33200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 33300Iteration: 33300,   Proposal: Multivariate,   LP: -18167
Iteration: 33400Iteration: 33400,   Proposal: Multivariate,   LP: -18167
Iteration: 33500Iteration: 33500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 33600Iteration: 33600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 33700Iteration: 33700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 33800Iteration: 33800,   Proposal: Multivariate,   LP: -18166.8
Iteration: 33900Iteration: 33900,   Proposal: Multivariate,   LP: -18166.8
Iteration: 34000Iteration: 34000,   Proposal: Multivariate,   LP: -18167
Iteration: 34100Iteration: 34100,   Proposal: Multivariate,   LP: -18167.3
Iteration: 34200Iteration: 34200,   Proposal: Multivariate,   LP: -18167.6
Iteration: 34300Iteration: 34300,   Proposal: Multivariate,   LP: -18166.9
Iteration: 34400Iteration: 34400,   Proposal: Multivariate,   LP: -18167
Iteration: 34500Iteration: 34500,   Proposal: Multivariate,   LP: -18167.5
Iteration: 34600Iteration: 34600,   Proposal: Multivariate,   LP: -18166.8
Iteration: 34700Iteration: 34700,   Proposal: Multivariate,   LP: -18166.8
Iteration: 34800Iteration: 34800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 34900Iteration: 34900,   Proposal: Multivariate,   LP: -18167.7
Iteration: 35000Iteration: 35000,   Proposal: Multivariate,   LP: -18167.7
Iteration: 35100Iteration: 35100,   Proposal: Multivariate,   LP: -18167.7
Iteration: 35200Iteration: 35200,   Proposal: Multivariate,   LP: -18167.8
Iteration: 35300Iteration: 35300,   Proposal: Multivariate,   LP: -18168.4
Iteration: 35400Iteration: 35400,   Proposal: Multivariate,   LP: -18167
Iteration: 35500Iteration: 35500,   Proposal: Multivariate,   LP: -18166.8
Iteration: 35600Iteration: 35600,   Proposal: Multivariate,   LP: -18167
Iteration: 35700Iteration: 35700,   Proposal: Multivariate,   LP: -18167.1
Iteration: 35800Iteration: 35800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 35900Iteration: 35900,   Proposal: Multivariate,   LP: -18166.8
Iteration: 36000Iteration: 36000,   Proposal: Multivariate,   LP: -18168.7
Iteration: 36100Iteration: 36100,   Proposal: Multivariate,   LP: -18167
Iteration: 36200Iteration: 36200,   Proposal: Multivariate,   LP: -18167
Iteration: 36300Iteration: 36300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 36400Iteration: 36400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 36500Iteration: 36500,   Proposal: Multivariate,   LP: -18166.8
Iteration: 36600Iteration: 36600,   Proposal: Multivariate,   LP: -18170.7
Iteration: 36700Iteration: 36700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 36800Iteration: 36800,   Proposal: Multivariate,   LP: -18167
Iteration: 36900Iteration: 36900,   Proposal: Multivariate,   LP: -18167
Iteration: 37000Iteration: 37000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 37100Iteration: 37100,   Proposal: Multivariate,   LP: -18167.1
Iteration: 37200Iteration: 37200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 37300Iteration: 37300,   Proposal: Multivariate,   LP: -18167
Iteration: 37400Iteration: 37400,   Proposal: Multivariate,   LP: -18167
Iteration: 37500Iteration: 37500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 37600Iteration: 37600,   Proposal: Multivariate,   LP: -18166.8
Iteration: 37700Iteration: 37700,   Proposal: Multivariate,   LP: -18166.8
Iteration: 37800Iteration: 37800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 37900Iteration: 37900,   Proposal: Multivariate,   LP: -18168.4
Iteration: 38000Iteration: 38000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 38100Iteration: 38100,   Proposal: Multivariate,   LP: -18167.3
Iteration: 38200Iteration: 38200,   Proposal: Multivariate,   LP: -18170.5
Iteration: 38300Iteration: 38300,   Proposal: Multivariate,   LP: -18168.8
Iteration: 38400Iteration: 38400,   Proposal: Multivariate,   LP: -18167.8
Iteration: 38500Iteration: 38500,   Proposal: Multivariate,   LP: -18168.5
Iteration: 38600Iteration: 38600,   Proposal: Multivariate,   LP: -18171.7
Iteration: 38700Iteration: 38700,   Proposal: Multivariate,   LP: -18171.2
Iteration: 38800Iteration: 38800,   Proposal: Multivariate,   LP: -18168.5
Iteration: 38900Iteration: 38900,   Proposal: Multivariate,   LP: -18167
Iteration: 39000Iteration: 39000,   Proposal: Multivariate,   LP: -18167
Iteration: 39100Iteration: 39100,   Proposal: Multivariate,   LP: -18167
Iteration: 39200Iteration: 39200,   Proposal: Multivariate,   LP: -18166.9
Iteration: 39300Iteration: 39300,   Proposal: Multivariate,   LP: -18166.9
Iteration: 39400Iteration: 39400,   Proposal: Multivariate,   LP: -18166.8
Iteration: 39500Iteration: 39500,   Proposal: Multivariate,   LP: -18167
Iteration: 39600Iteration: 39600,   Proposal: Multivariate,   LP: -18168.1
Iteration: 39700Iteration: 39700,   Proposal: Multivariate,   LP: -18167
Iteration: 39800Iteration: 39800,   Proposal: Multivariate,   LP: -18168.9
Iteration: 39900Iteration: 39900,   Proposal: Multivariate,   LP: -18169
Iteration: 40000Iteration: 40000,   Proposal: Multivariate,   LP: -18169
Iteration: 40100Iteration: 40100,   Proposal: Multivariate,   LP: -18168.6
Iteration: 40200Iteration: 40200,   Proposal: Multivariate,   LP: -18170.4
Iteration: 40300Iteration: 40300,   Proposal: Multivariate,   LP: -18171.4
Iteration: 40400Iteration: 40400,   Proposal: Multivariate,   LP: -18168
Iteration: 40500Iteration: 40500,   Proposal: Multivariate,   LP: -18167.6
Iteration: 40600Iteration: 40600,   Proposal: Multivariate,   LP: -18169.1
Iteration: 40700Iteration: 40700,   Proposal: Multivariate,   LP: -18167.9
Iteration: 40800Iteration: 40800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 40900Iteration: 40900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 41000Iteration: 41000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 41100Iteration: 41100,   Proposal: Multivariate,   LP: -18167.6
Iteration: 41200Iteration: 41200,   Proposal: Multivariate,   LP: -18167.8
Iteration: 41300Iteration: 41300,   Proposal: Multivariate,   LP: -18167.9
Iteration: 41400Iteration: 41400,   Proposal: Multivariate,   LP: -18167
Iteration: 41500Iteration: 41500,   Proposal: Multivariate,   LP: -18167
Iteration: 41600Iteration: 41600,   Proposal: Multivariate,   LP: -18167.8
Iteration: 41700Iteration: 41700,   Proposal: Multivariate,   LP: -18167
Iteration: 41800Iteration: 41800,   Proposal: Multivariate,   LP: -18167.2
Iteration: 41900Iteration: 41900,   Proposal: Multivariate,   LP: -18168.5
Iteration: 42000Iteration: 42000,   Proposal: Multivariate,   LP: -18168.5
Iteration: 42100Iteration: 42100,   Proposal: Multivariate,   LP: -18167.8
Iteration: 42200Iteration: 42200,   Proposal: Multivariate,   LP: -18167.6
Iteration: 42300Iteration: 42300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 42400Iteration: 42400,   Proposal: Multivariate,   LP: -18167.2
Iteration: 42500Iteration: 42500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 42600Iteration: 42600,   Proposal: Multivariate,   LP: -18168
Iteration: 42700Iteration: 42700,   Proposal: Multivariate,   LP: -18168.8
Iteration: 42800Iteration: 42800,   Proposal: Multivariate,   LP: -18167.3
Iteration: 42900Iteration: 42900,   Proposal: Multivariate,   LP: -18167
Iteration: 43000Iteration: 43000,   Proposal: Multivariate,   LP: -18168.1
Iteration: 43100Iteration: 43100,   Proposal: Multivariate,   LP: -18167.4
Iteration: 43200Iteration: 43200,   Proposal: Multivariate,   LP: -18167.5
Iteration: 43300Iteration: 43300,   Proposal: Multivariate,   LP: -18167.5
Iteration: 43400Iteration: 43400,   Proposal: Multivariate,   LP: -18167.1
Iteration: 43500Iteration: 43500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 43600Iteration: 43600,   Proposal: Multivariate,   LP: -18167.7
Iteration: 43700Iteration: 43700,   Proposal: Multivariate,   LP: -18167.3
Iteration: 43800Iteration: 43800,   Proposal: Multivariate,   LP: -18168.2
Iteration: 43900Iteration: 43900,   Proposal: Multivariate,   LP: -18169.9
Iteration: 44000Iteration: 44000,   Proposal: Multivariate,   LP: -18168.9
Iteration: 44100Iteration: 44100,   Proposal: Multivariate,   LP: -18168.7
Iteration: 44200Iteration: 44200,   Proposal: Multivariate,   LP: -18167.7
Iteration: 44300Iteration: 44300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 44400Iteration: 44400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 44500Iteration: 44500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 44600Iteration: 44600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 44700Iteration: 44700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 44800Iteration: 44800,   Proposal: Multivariate,   LP: -18168.5
Iteration: 44900Iteration: 44900,   Proposal: Multivariate,   LP: -18171.6
Iteration: 45000Iteration: 45000,   Proposal: Multivariate,   LP: -18171.6
Iteration: 45100Iteration: 45100,   Proposal: Multivariate,   LP: -18170.8
Iteration: 45200Iteration: 45200,   Proposal: Multivariate,   LP: -18167.4
Iteration: 45300Iteration: 45300,   Proposal: Multivariate,   LP: -18168.6
Iteration: 45400Iteration: 45400,   Proposal: Multivariate,   LP: -18167.1
Iteration: 45500Iteration: 45500,   Proposal: Multivariate,   LP: -18167.5
Iteration: 45600Iteration: 45600,   Proposal: Multivariate,   LP: -18167.3
Iteration: 45700Iteration: 45700,   Proposal: Multivariate,   LP: -18167.3
Iteration: 45800Iteration: 45800,   Proposal: Multivariate,   LP: -18168
Iteration: 45900Iteration: 45900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 46000Iteration: 46000,   Proposal: Multivariate,   LP: -18167
Iteration: 46100Iteration: 46100,   Proposal: Multivariate,   LP: -18167
Iteration: 46200Iteration: 46200,   Proposal: Multivariate,   LP: -18168.4
Iteration: 46300Iteration: 46300,   Proposal: Multivariate,   LP: -18168
Iteration: 46400Iteration: 46400,   Proposal: Multivariate,   LP: -18167.5
Iteration: 46500Iteration: 46500,   Proposal: Multivariate,   LP: -18167.5
Iteration: 46600Iteration: 46600,   Proposal: Multivariate,   LP: -18169.7
Iteration: 46700Iteration: 46700,   Proposal: Multivariate,   LP: -18167.7
Iteration: 46800Iteration: 46800,   Proposal: Multivariate,   LP: -18167
Iteration: 46900Iteration: 46900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 47000Iteration: 47000,   Proposal: Multivariate,   LP: -18167
Iteration: 47100Iteration: 47100,   Proposal: Multivariate,   LP: -18169.5
Iteration: 47200Iteration: 47200,   Proposal: Multivariate,   LP: -18169.5
Iteration: 47300Iteration: 47300,   Proposal: Multivariate,   LP: -18169.5
Iteration: 47400Iteration: 47400,   Proposal: Multivariate,   LP: -18168.4
Iteration: 47500Iteration: 47500,   Proposal: Multivariate,   LP: -18169
Iteration: 47600Iteration: 47600,   Proposal: Multivariate,   LP: -18168.6
Iteration: 47700Iteration: 47700,   Proposal: Multivariate,   LP: -18167.9
Iteration: 47800Iteration: 47800,   Proposal: Multivariate,   LP: -18167.3
Iteration: 47900Iteration: 47900,   Proposal: Multivariate,   LP: -18168.2
Iteration: 48000Iteration: 48000,   Proposal: Multivariate,   LP: -18167.7
Iteration: 48100Iteration: 48100,   Proposal: Multivariate,   LP: -18167.8
Iteration: 48200Iteration: 48200,   Proposal: Multivariate,   LP: -18168.7
Iteration: 48300Iteration: 48300,   Proposal: Multivariate,   LP: -18168.1
Iteration: 48400Iteration: 48400,   Proposal: Multivariate,   LP: -18167.1
Iteration: 48500Iteration: 48500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 48600Iteration: 48600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 48700Iteration: 48700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 48800Iteration: 48800,   Proposal: Multivariate,   LP: -18168.3
Iteration: 48900Iteration: 48900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 49000Iteration: 49000,   Proposal: Multivariate,   LP: -18167
Iteration: 49100Iteration: 49100,   Proposal: Multivariate,   LP: -18167
Iteration: 49200Iteration: 49200,   Proposal: Multivariate,   LP: -18167.2
Iteration: 49300Iteration: 49300,   Proposal: Multivariate,   LP: -18168.3
Iteration: 49400Iteration: 49400,   Proposal: Multivariate,   LP: -18167.8
Iteration: 49500Iteration: 49500,   Proposal: Multivariate,   LP: -18167.3
Iteration: 49600Iteration: 49600,   Proposal: Multivariate,   LP: -18167.3
Iteration: 49700Iteration: 49700,   Proposal: Multivariate,   LP: -18167.7
Iteration: 49800Iteration: 49800,   Proposal: Multivariate,   LP: -18167.7
Iteration: 49900Iteration: 49900,   Proposal: Multivariate,   LP: -18169.8
Iteration: 50000Iteration: 50000,   Proposal: Multivariate,   LP: -18167
Iteration: 50100Iteration: 50100,   Proposal: Multivariate,   LP: -18168.1
Iteration: 50200Iteration: 50200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 50300Iteration: 50300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 50400Iteration: 50400,   Proposal: Multivariate,   LP: -18167.7
Iteration: 50500Iteration: 50500,   Proposal: Multivariate,   LP: -18167.6
Iteration: 50600Iteration: 50600,   Proposal: Multivariate,   LP: -18167.4
Iteration: 50700Iteration: 50700,   Proposal: Multivariate,   LP: -18167.7
Iteration: 50800Iteration: 50800,   Proposal: Multivariate,   LP: -18168
Iteration: 50900Iteration: 50900,   Proposal: Multivariate,   LP: -18168.6
Iteration: 51000Iteration: 51000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 51100Iteration: 51100,   Proposal: Multivariate,   LP: -18167.2
Iteration: 51200Iteration: 51200,   Proposal: Multivariate,   LP: -18167.2
Iteration: 51300Iteration: 51300,   Proposal: Multivariate,   LP: -18167.2
Iteration: 51400Iteration: 51400,   Proposal: Multivariate,   LP: -18167.5
Iteration: 51500Iteration: 51500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 51600Iteration: 51600,   Proposal: Multivariate,   LP: -18169.3
Iteration: 51700Iteration: 51700,   Proposal: Multivariate,   LP: -18168.6
Iteration: 51800Iteration: 51800,   Proposal: Multivariate,   LP: -18167.2
Iteration: 51900Iteration: 51900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 52000Iteration: 52000,   Proposal: Multivariate,   LP: -18168
Iteration: 52100Iteration: 52100,   Proposal: Multivariate,   LP: -18169.1
Iteration: 52200Iteration: 52200,   Proposal: Multivariate,   LP: -18167.6
Iteration: 52300Iteration: 52300,   Proposal: Multivariate,   LP: -18168.4
Iteration: 52400Iteration: 52400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 52500Iteration: 52500,   Proposal: Multivariate,   LP: -18167.5
Iteration: 52600Iteration: 52600,   Proposal: Multivariate,   LP: -18167.6
Iteration: 52700Iteration: 52700,   Proposal: Multivariate,   LP: -18168.3
Iteration: 52800Iteration: 52800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 52900Iteration: 52900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 53000Iteration: 53000,   Proposal: Multivariate,   LP: -18166.9
Iteration: 53100Iteration: 53100,   Proposal: Multivariate,   LP: -18166.9
Iteration: 53200Iteration: 53200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 53300Iteration: 53300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 53400Iteration: 53400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 53500Iteration: 53500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 53600Iteration: 53600,   Proposal: Multivariate,   LP: -18168
Iteration: 53700Iteration: 53700,   Proposal: Multivariate,   LP: -18168.3
Iteration: 53800Iteration: 53800,   Proposal: Multivariate,   LP: -18167.5
Iteration: 53900Iteration: 53900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 54000Iteration: 54000,   Proposal: Multivariate,   LP: -18167.4
Iteration: 54100Iteration: 54100,   Proposal: Multivariate,   LP: -18168.3
Iteration: 54200Iteration: 54200,   Proposal: Multivariate,   LP: -18167.2
Iteration: 54300Iteration: 54300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 54400Iteration: 54400,   Proposal: Multivariate,   LP: -18167.6
Iteration: 54500Iteration: 54500,   Proposal: Multivariate,   LP: -18167
Iteration: 54600Iteration: 54600,   Proposal: Multivariate,   LP: -18168.2
Iteration: 54700Iteration: 54700,   Proposal: Multivariate,   LP: -18168
Iteration: 54800Iteration: 54800,   Proposal: Multivariate,   LP: -18168
Iteration: 54900Iteration: 54900,   Proposal: Multivariate,   LP: -18168.4
Iteration: 55000Iteration: 55000,   Proposal: Multivariate,   LP: -18168.4
Iteration: 55100Iteration: 55100,   Proposal: Multivariate,   LP: -18168
Iteration: 55200Iteration: 55200,   Proposal: Multivariate,   LP: -18168.1
Iteration: 55300Iteration: 55300,   Proposal: Multivariate,   LP: -18167.9
Iteration: 55400Iteration: 55400,   Proposal: Multivariate,   LP: -18168.3
Iteration: 55500Iteration: 55500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 55600Iteration: 55600,   Proposal: Multivariate,   LP: -18167.8
Iteration: 55700Iteration: 55700,   Proposal: Multivariate,   LP: -18167.1
Iteration: 55800Iteration: 55800,   Proposal: Multivariate,   LP: -18167
Iteration: 55900Iteration: 55900,   Proposal: Multivariate,   LP: -18167
Iteration: 56000Iteration: 56000,   Proposal: Multivariate,   LP: -18167.4
Iteration: 56100Iteration: 56100,   Proposal: Multivariate,   LP: -18168.1
Iteration: 56200Iteration: 56200,   Proposal: Multivariate,   LP: -18167
Iteration: 56300Iteration: 56300,   Proposal: Multivariate,   LP: -18167.8
Iteration: 56400Iteration: 56400,   Proposal: Multivariate,   LP: -18167.9
Iteration: 56500Iteration: 56500,   Proposal: Multivariate,   LP: -18166.8
Iteration: 56600Iteration: 56600,   Proposal: Multivariate,   LP: -18166.8
Iteration: 56700Iteration: 56700,   Proposal: Multivariate,   LP: -18167.4
Iteration: 56800Iteration: 56800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 56900Iteration: 56900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 57000Iteration: 57000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 57100Iteration: 57100,   Proposal: Multivariate,   LP: -18167.2
Iteration: 57200Iteration: 57200,   Proposal: Multivariate,   LP: -18167.7
Iteration: 57300Iteration: 57300,   Proposal: Multivariate,   LP: -18167.7
Iteration: 57400Iteration: 57400,   Proposal: Multivariate,   LP: -18167.6
Iteration: 57500Iteration: 57500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 57600Iteration: 57600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 57700Iteration: 57700,   Proposal: Multivariate,   LP: -18174.7
Iteration: 57800Iteration: 57800,   Proposal: Multivariate,   LP: -18168.5
Iteration: 57900Iteration: 57900,   Proposal: Multivariate,   LP: -18169.5
Iteration: 58000Iteration: 58000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 58100Iteration: 58100,   Proposal: Multivariate,   LP: -18167.6
Iteration: 58200Iteration: 58200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 58300Iteration: 58300,   Proposal: Multivariate,   LP: -18167.3
Iteration: 58400Iteration: 58400,   Proposal: Multivariate,   LP: -18168.8
Iteration: 58500Iteration: 58500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 58600Iteration: 58600,   Proposal: Multivariate,   LP: -18167.6
Iteration: 58700Iteration: 58700,   Proposal: Multivariate,   LP: -18167.4
Iteration: 58800Iteration: 58800,   Proposal: Multivariate,   LP: -18167.9
Iteration: 58900Iteration: 58900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 59000Iteration: 59000,   Proposal: Multivariate,   LP: -18168.2
Iteration: 59100Iteration: 59100,   Proposal: Multivariate,   LP: -18169.5
Iteration: 59200Iteration: 59200,   Proposal: Multivariate,   LP: -18169.7
Iteration: 59300Iteration: 59300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 59400Iteration: 59400,   Proposal: Multivariate,   LP: -18167.6
Iteration: 59500Iteration: 59500,   Proposal: Multivariate,   LP: -18168
Iteration: 59600Iteration: 59600,   Proposal: Multivariate,   LP: -18168.6
Iteration: 59700Iteration: 59700,   Proposal: Multivariate,   LP: -18168.8
Iteration: 59800Iteration: 59800,   Proposal: Multivariate,   LP: -18167.8
Iteration: 59900Iteration: 59900,   Proposal: Multivariate,   LP: -18168
Iteration: 60000Iteration: 60000,   Proposal: Multivariate,   LP: -18168.2
Iteration: 60100Iteration: 60100,   Proposal: Multivariate,   LP: -18168.3
Iteration: 60200Iteration: 60200,   Proposal: Multivariate,   LP: -18167.6
Iteration: 60300Iteration: 60300,   Proposal: Multivariate,   LP: -18167.2
Iteration: 60400Iteration: 60400,   Proposal: Multivariate,   LP: -18167.8
Iteration: 60500Iteration: 60500,   Proposal: Multivariate,   LP: -18168
Iteration: 60600Iteration: 60600,   Proposal: Multivariate,   LP: -18168.6
Iteration: 60700Iteration: 60700,   Proposal: Multivariate,   LP: -18167.1
Iteration: 60800Iteration: 60800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 60900Iteration: 60900,   Proposal: Multivariate,   LP: -18167
Iteration: 61000Iteration: 61000,   Proposal: Multivariate,   LP: -18167.7
Iteration: 61100Iteration: 61100,   Proposal: Multivariate,   LP: -18167.1
Iteration: 61200Iteration: 61200,   Proposal: Multivariate,   LP: -18167.3
Iteration: 61300Iteration: 61300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 61400Iteration: 61400,   Proposal: Multivariate,   LP: -18168.9
Iteration: 61500Iteration: 61500,   Proposal: Multivariate,   LP: -18168.2
Iteration: 61600Iteration: 61600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 61700Iteration: 61700,   Proposal: Multivariate,   LP: -18167.4
Iteration: 61800Iteration: 61800,   Proposal: Multivariate,   LP: -18167
Iteration: 61900Iteration: 61900,   Proposal: Multivariate,   LP: -18168
Iteration: 62000Iteration: 62000,   Proposal: Multivariate,   LP: -18168
Iteration: 62100Iteration: 62100,   Proposal: Multivariate,   LP: -18167.7
Iteration: 62200Iteration: 62200,   Proposal: Multivariate,   LP: -18167.9
Iteration: 62300Iteration: 62300,   Proposal: Multivariate,   LP: -18169
Iteration: 62400Iteration: 62400,   Proposal: Multivariate,   LP: -18169.1
Iteration: 62500Iteration: 62500,   Proposal: Multivariate,   LP: -18169
Iteration: 62600Iteration: 62600,   Proposal: Multivariate,   LP: -18168.8
Iteration: 62700Iteration: 62700,   Proposal: Multivariate,   LP: -18168.2
Iteration: 62800Iteration: 62800,   Proposal: Multivariate,   LP: -18167.5
Iteration: 62900Iteration: 62900,   Proposal: Multivariate,   LP: -18167.5
Iteration: 63000Iteration: 63000,   Proposal: Multivariate,   LP: -18167.5
Iteration: 63100Iteration: 63100,   Proposal: Multivariate,   LP: -18167.3
Iteration: 63200Iteration: 63200,   Proposal: Multivariate,   LP: -18168.1
Iteration: 63300Iteration: 63300,   Proposal: Multivariate,   LP: -18167.3
Iteration: 63400Iteration: 63400,   Proposal: Multivariate,   LP: -18168.4
Iteration: 63500Iteration: 63500,   Proposal: Multivariate,   LP: -18167
Iteration: 63600Iteration: 63600,   Proposal: Multivariate,   LP: -18168.3
Iteration: 63700Iteration: 63700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 63800Iteration: 63800,   Proposal: Multivariate,   LP: -18167.4
Iteration: 63900Iteration: 63900,   Proposal: Multivariate,   LP: -18167
Iteration: 64000Iteration: 64000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 64100Iteration: 64100,   Proposal: Multivariate,   LP: -18167
Iteration: 64200Iteration: 64200,   Proposal: Multivariate,   LP: -18167
Iteration: 64300Iteration: 64300,   Proposal: Multivariate,   LP: -18167
Iteration: 64400Iteration: 64400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 64500Iteration: 64500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 64600Iteration: 64600,   Proposal: Multivariate,   LP: -18167.6
Iteration: 64700Iteration: 64700,   Proposal: Multivariate,   LP: -18167.3
Iteration: 64800Iteration: 64800,   Proposal: Multivariate,   LP: -18167.3
Iteration: 64900Iteration: 64900,   Proposal: Multivariate,   LP: -18167
Iteration: 65000Iteration: 65000,   Proposal: Multivariate,   LP: -18167.6
Iteration: 65100Iteration: 65100,   Proposal: Multivariate,   LP: -18166.9
Iteration: 65200Iteration: 65200,   Proposal: Multivariate,   LP: -18166.9
Iteration: 65300Iteration: 65300,   Proposal: Multivariate,   LP: -18166.9
Iteration: 65400Iteration: 65400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 65500Iteration: 65500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 65600Iteration: 65600,   Proposal: Multivariate,   LP: -18168.4
Iteration: 65700Iteration: 65700,   Proposal: Multivariate,   LP: -18167
Iteration: 65800Iteration: 65800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 65900Iteration: 65900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 66000Iteration: 66000,   Proposal: Multivariate,   LP: -18167.8
Iteration: 66100Iteration: 66100,   Proposal: Multivariate,   LP: -18168.2
Iteration: 66200Iteration: 66200,   Proposal: Multivariate,   LP: -18169.8
Iteration: 66300Iteration: 66300,   Proposal: Multivariate,   LP: -18168
Iteration: 66400Iteration: 66400,   Proposal: Multivariate,   LP: -18168
Iteration: 66500Iteration: 66500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 66600Iteration: 66600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 66700Iteration: 66700,   Proposal: Multivariate,   LP: -18167.2
Iteration: 66800Iteration: 66800,   Proposal: Multivariate,   LP: -18168.6
Iteration: 66900Iteration: 66900,   Proposal: Multivariate,   LP: -18168.6
Iteration: 67000Iteration: 67000,   Proposal: Multivariate,   LP: -18167.6
Iteration: 67100Iteration: 67100,   Proposal: Multivariate,   LP: -18167.6
Iteration: 67200Iteration: 67200,   Proposal: Multivariate,   LP: -18167.6
Iteration: 67300Iteration: 67300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 67400Iteration: 67400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 67500Iteration: 67500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 67600Iteration: 67600,   Proposal: Multivariate,   LP: -18167.5
Iteration: 67700Iteration: 67700,   Proposal: Multivariate,   LP: -18168.1
Iteration: 67800Iteration: 67800,   Proposal: Multivariate,   LP: -18168
Iteration: 67900Iteration: 67900,   Proposal: Multivariate,   LP: -18169.1
Iteration: 68000Iteration: 68000,   Proposal: Multivariate,   LP: -18170.2
Iteration: 68100Iteration: 68100,   Proposal: Multivariate,   LP: -18168.2
Iteration: 68200Iteration: 68200,   Proposal: Multivariate,   LP: -18168.4
Iteration: 68300Iteration: 68300,   Proposal: Multivariate,   LP: -18168.1
Iteration: 68400Iteration: 68400,   Proposal: Multivariate,   LP: -18168.5
Iteration: 68500Iteration: 68500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 68600Iteration: 68600,   Proposal: Multivariate,   LP: -18167.8
Iteration: 68700Iteration: 68700,   Proposal: Multivariate,   LP: -18167.8
Iteration: 68800Iteration: 68800,   Proposal: Multivariate,   LP: -18167.8
Iteration: 68900Iteration: 68900,   Proposal: Multivariate,   LP: -18167.8
Iteration: 69000Iteration: 69000,   Proposal: Multivariate,   LP: -18167
Iteration: 69100Iteration: 69100,   Proposal: Multivariate,   LP: -18167
Iteration: 69200Iteration: 69200,   Proposal: Multivariate,   LP: -18167.4
Iteration: 69300Iteration: 69300,   Proposal: Multivariate,   LP: -18167.3
Iteration: 69400Iteration: 69400,   Proposal: Multivariate,   LP: -18167.3
Iteration: 69500Iteration: 69500,   Proposal: Multivariate,   LP: -18168.4
Iteration: 69600Iteration: 69600,   Proposal: Multivariate,   LP: -18168.4
Iteration: 69700Iteration: 69700,   Proposal: Multivariate,   LP: -18169
Iteration: 69800Iteration: 69800,   Proposal: Multivariate,   LP: -18169.7
Iteration: 69900Iteration: 69900,   Proposal: Multivariate,   LP: -18171.8
Iteration: 70000Iteration: 70000,   Proposal: Multivariate,   LP: -18166.9
Iteration: 70100Iteration: 70100,   Proposal: Multivariate,   LP: -18166.9
Iteration: 70200Iteration: 70200,   Proposal: Multivariate,   LP: -18166.9
Iteration: 70300Iteration: 70300,   Proposal: Multivariate,   LP: -18167
Iteration: 70400Iteration: 70400,   Proposal: Multivariate,   LP: -18167
Iteration: 70500Iteration: 70500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 70600Iteration: 70600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 70700Iteration: 70700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 70800Iteration: 70800,   Proposal: Multivariate,   LP: -18167
Iteration: 70900Iteration: 70900,   Proposal: Multivariate,   LP: -18168.3
Iteration: 71000Iteration: 71000,   Proposal: Multivariate,   LP: -18167.9
Iteration: 71100Iteration: 71100,   Proposal: Multivariate,   LP: -18167.6
Iteration: 71200Iteration: 71200,   Proposal: Multivariate,   LP: -18168
Iteration: 71300Iteration: 71300,   Proposal: Multivariate,   LP: -18167.4
Iteration: 71400Iteration: 71400,   Proposal: Multivariate,   LP: -18167.8
Iteration: 71500Iteration: 71500,   Proposal: Multivariate,   LP: -18168.7
Iteration: 71600Iteration: 71600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 71700Iteration: 71700,   Proposal: Multivariate,   LP: -18167.2
Iteration: 71800Iteration: 71800,   Proposal: Multivariate,   LP: -18168.5
Iteration: 71900Iteration: 71900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 72000Iteration: 72000,   Proposal: Multivariate,   LP: -18167.8
Iteration: 72100Iteration: 72100,   Proposal: Multivariate,   LP: -18167.6
Iteration: 72200Iteration: 72200,   Proposal: Multivariate,   LP: -18167.4
Iteration: 72300Iteration: 72300,   Proposal: Multivariate,   LP: -18167.7
Iteration: 72400Iteration: 72400,   Proposal: Multivariate,   LP: -18168.6
Iteration: 72500Iteration: 72500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 72600Iteration: 72600,   Proposal: Multivariate,   LP: -18167.3
Iteration: 72700Iteration: 72700,   Proposal: Multivariate,   LP: -18167
Iteration: 72800Iteration: 72800,   Proposal: Multivariate,   LP: -18167
Iteration: 72900Iteration: 72900,   Proposal: Multivariate,   LP: -18167.8
Iteration: 73000Iteration: 73000,   Proposal: Multivariate,   LP: -18167.5
Iteration: 73100Iteration: 73100,   Proposal: Multivariate,   LP: -18167.2
Iteration: 73200Iteration: 73200,   Proposal: Multivariate,   LP: -18168.5
Iteration: 73300Iteration: 73300,   Proposal: Multivariate,   LP: -18166.9
Iteration: 73400Iteration: 73400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 73500Iteration: 73500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 73600Iteration: 73600,   Proposal: Multivariate,   LP: -18167.7
Iteration: 73700Iteration: 73700,   Proposal: Multivariate,   LP: -18167
Iteration: 73800Iteration: 73800,   Proposal: Multivariate,   LP: -18168
Iteration: 73900Iteration: 73900,   Proposal: Multivariate,   LP: -18170
Iteration: 74000Iteration: 74000,   Proposal: Multivariate,   LP: -18168.5
Iteration: 74100Iteration: 74100,   Proposal: Multivariate,   LP: -18167.8
Iteration: 74200Iteration: 74200,   Proposal: Multivariate,   LP: -18167.4
Iteration: 74300Iteration: 74300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 74400Iteration: 74400,   Proposal: Multivariate,   LP: -18167
Iteration: 74500Iteration: 74500,   Proposal: Multivariate,   LP: -18169.1
Iteration: 74600Iteration: 74600,   Proposal: Multivariate,   LP: -18167.3
Iteration: 74700Iteration: 74700,   Proposal: Multivariate,   LP: -18167.4
Iteration: 74800Iteration: 74800,   Proposal: Multivariate,   LP: -18167
Iteration: 74900Iteration: 74900,   Proposal: Multivariate,   LP: -18167.6
Iteration: 75000Iteration: 75000,   Proposal: Multivariate,   LP: -18167.8
Iteration: 75100Iteration: 75100,   Proposal: Multivariate,   LP: -18167.8
Iteration: 75200Iteration: 75200,   Proposal: Multivariate,   LP: -18168.7
Iteration: 75300Iteration: 75300,   Proposal: Multivariate,   LP: -18168.7
Iteration: 75400Iteration: 75400,   Proposal: Multivariate,   LP: -18167.4
Iteration: 75500Iteration: 75500,   Proposal: Multivariate,   LP: -18168.7
Iteration: 75600Iteration: 75600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 75700Iteration: 75700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 75800Iteration: 75800,   Proposal: Multivariate,   LP: -18168.2
Iteration: 75900Iteration: 75900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 76000Iteration: 76000,   Proposal: Multivariate,   LP: -18167.5
Iteration: 76100Iteration: 76100,   Proposal: Multivariate,   LP: -18169
Iteration: 76200Iteration: 76200,   Proposal: Multivariate,   LP: -18167.2
Iteration: 76300Iteration: 76300,   Proposal: Multivariate,   LP: -18167.9
Iteration: 76400Iteration: 76400,   Proposal: Multivariate,   LP: -18167.5
Iteration: 76500Iteration: 76500,   Proposal: Multivariate,   LP: -18166.8
Iteration: 76600Iteration: 76600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 76700Iteration: 76700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 76800Iteration: 76800,   Proposal: Multivariate,   LP: -18167.9
Iteration: 76900Iteration: 76900,   Proposal: Multivariate,   LP: -18167.9
Iteration: 77000Iteration: 77000,   Proposal: Multivariate,   LP: -18167
Iteration: 77100Iteration: 77100,   Proposal: Multivariate,   LP: -18168.5
Iteration: 77200Iteration: 77200,   Proposal: Multivariate,   LP: -18166.8
Iteration: 77300Iteration: 77300,   Proposal: Multivariate,   LP: -18166.8
Iteration: 77400Iteration: 77400,   Proposal: Multivariate,   LP: -18166.8
Iteration: 77500Iteration: 77500,   Proposal: Multivariate,   LP: -18166.8
Iteration: 77600Iteration: 77600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 77700Iteration: 77700,   Proposal: Multivariate,   LP: -18169.2
Iteration: 77800Iteration: 77800,   Proposal: Multivariate,   LP: -18166.8
Iteration: 77900Iteration: 77900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 78000Iteration: 78000,   Proposal: Multivariate,   LP: -18166.9
Iteration: 78100Iteration: 78100,   Proposal: Multivariate,   LP: -18167
Iteration: 78200Iteration: 78200,   Proposal: Multivariate,   LP: -18171.9
Iteration: 78300Iteration: 78300,   Proposal: Multivariate,   LP: -18168.9
Iteration: 78400Iteration: 78400,   Proposal: Multivariate,   LP: -18168.8
Iteration: 78500Iteration: 78500,   Proposal: Multivariate,   LP: -18168.6
Iteration: 78600Iteration: 78600,   Proposal: Multivariate,   LP: -18167.9
Iteration: 78700Iteration: 78700,   Proposal: Multivariate,   LP: -18167.9
Iteration: 78800Iteration: 78800,   Proposal: Multivariate,   LP: -18167.9
Iteration: 78900Iteration: 78900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 79000Iteration: 79000,   Proposal: Multivariate,   LP: -18167.3
Iteration: 79100Iteration: 79100,   Proposal: Multivariate,   LP: -18167.2
Iteration: 79200Iteration: 79200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 79300Iteration: 79300,   Proposal: Multivariate,   LP: -18168.6
Iteration: 79400Iteration: 79400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 79500Iteration: 79500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 79600Iteration: 79600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 79700Iteration: 79700,   Proposal: Multivariate,   LP: -18166.9
Iteration: 79800Iteration: 79800,   Proposal: Multivariate,   LP: -18169
Iteration: 79900Iteration: 79900,   Proposal: Multivariate,   LP: -18168.3
Iteration: 80000Iteration: 80000,   Proposal: Multivariate,   LP: -18169.7
Iteration: 80100Iteration: 80100,   Proposal: Multivariate,   LP: -18168.8
Iteration: 80200Iteration: 80200,   Proposal: Multivariate,   LP: -18167
Iteration: 80300Iteration: 80300,   Proposal: Multivariate,   LP: -18167.8
Iteration: 80400Iteration: 80400,   Proposal: Multivariate,   LP: -18169.3
Iteration: 80500Iteration: 80500,   Proposal: Multivariate,   LP: -18167.6
Iteration: 80600Iteration: 80600,   Proposal: Multivariate,   LP: -18168.6
Iteration: 80700Iteration: 80700,   Proposal: Multivariate,   LP: -18167.9
Iteration: 80800Iteration: 80800,   Proposal: Multivariate,   LP: -18167.1
Iteration: 80900Iteration: 80900,   Proposal: Multivariate,   LP: -18167.6
Iteration: 81000Iteration: 81000,   Proposal: Multivariate,   LP: -18167
Iteration: 81100Iteration: 81100,   Proposal: Multivariate,   LP: -18167
Iteration: 81200Iteration: 81200,   Proposal: Multivariate,   LP: -18167
Iteration: 81300Iteration: 81300,   Proposal: Multivariate,   LP: -18168.7
Iteration: 81400Iteration: 81400,   Proposal: Multivariate,   LP: -18168.4
Iteration: 81500Iteration: 81500,   Proposal: Multivariate,   LP: -18168.2
Iteration: 81600Iteration: 81600,   Proposal: Multivariate,   LP: -18168.2
Iteration: 81700Iteration: 81700,   Proposal: Multivariate,   LP: -18167
Iteration: 81800Iteration: 81800,   Proposal: Multivariate,   LP: -18167
Iteration: 81900Iteration: 81900,   Proposal: Multivariate,   LP: -18167
Iteration: 82000Iteration: 82000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 82100Iteration: 82100,   Proposal: Multivariate,   LP: -18167.2
Iteration: 82200Iteration: 82200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 82300Iteration: 82300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 82400Iteration: 82400,   Proposal: Multivariate,   LP: -18167
Iteration: 82500Iteration: 82500,   Proposal: Multivariate,   LP: -18167
Iteration: 82600Iteration: 82600,   Proposal: Multivariate,   LP: -18167.2
Iteration: 82700Iteration: 82700,   Proposal: Multivariate,   LP: -18167
Iteration: 82800Iteration: 82800,   Proposal: Multivariate,   LP: -18168.8
Iteration: 82900Iteration: 82900,   Proposal: Multivariate,   LP: -18167.2
Iteration: 83000Iteration: 83000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 83100Iteration: 83100,   Proposal: Multivariate,   LP: -18167.2
Iteration: 83200Iteration: 83200,   Proposal: Multivariate,   LP: -18167.4
Iteration: 83300Iteration: 83300,   Proposal: Multivariate,   LP: -18170.3
Iteration: 83400Iteration: 83400,   Proposal: Multivariate,   LP: -18166.9
Iteration: 83500Iteration: 83500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 83600Iteration: 83600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 83700Iteration: 83700,   Proposal: Multivariate,   LP: -18166.8
Iteration: 83800Iteration: 83800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 83900Iteration: 83900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 84000Iteration: 84000,   Proposal: Multivariate,   LP: -18167.7
Iteration: 84100Iteration: 84100,   Proposal: Multivariate,   LP: -18167.3
Iteration: 84200Iteration: 84200,   Proposal: Multivariate,   LP: -18167.3
Iteration: 84300Iteration: 84300,   Proposal: Multivariate,   LP: -18167
Iteration: 84400Iteration: 84400,   Proposal: Multivariate,   LP: -18167.7
Iteration: 84500Iteration: 84500,   Proposal: Multivariate,   LP: -18168.4
Iteration: 84600Iteration: 84600,   Proposal: Multivariate,   LP: -18169.7
Iteration: 84700Iteration: 84700,   Proposal: Multivariate,   LP: -18169.6
Iteration: 84800Iteration: 84800,   Proposal: Multivariate,   LP: -18169.2
Iteration: 84900Iteration: 84900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 85000Iteration: 85000,   Proposal: Multivariate,   LP: -18169.4
Iteration: 85100Iteration: 85100,   Proposal: Multivariate,   LP: -18168.5
Iteration: 85200Iteration: 85200,   Proposal: Multivariate,   LP: -18167.5
Iteration: 85300Iteration: 85300,   Proposal: Multivariate,   LP: -18167.4
Iteration: 85400Iteration: 85400,   Proposal: Multivariate,   LP: -18167.4
Iteration: 85500Iteration: 85500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 85600Iteration: 85600,   Proposal: Multivariate,   LP: -18168.2
Iteration: 85700Iteration: 85700,   Proposal: Multivariate,   LP: -18167.3
Iteration: 85800Iteration: 85800,   Proposal: Multivariate,   LP: -18167.2
Iteration: 85900Iteration: 85900,   Proposal: Multivariate,   LP: -18168.1
Iteration: 86000Iteration: 86000,   Proposal: Multivariate,   LP: -18168.1
Iteration: 86100Iteration: 86100,   Proposal: Multivariate,   LP: -18168.1
Iteration: 86200Iteration: 86200,   Proposal: Multivariate,   LP: -18167.8
Iteration: 86300Iteration: 86300,   Proposal: Multivariate,   LP: -18167.8
Iteration: 86400Iteration: 86400,   Proposal: Multivariate,   LP: -18167
Iteration: 86500Iteration: 86500,   Proposal: Multivariate,   LP: -18167
Iteration: 86600Iteration: 86600,   Proposal: Multivariate,   LP: -18167.1
Iteration: 86700Iteration: 86700,   Proposal: Multivariate,   LP: -18167.4
Iteration: 86800Iteration: 86800,   Proposal: Multivariate,   LP: -18167.4
Iteration: 86900Iteration: 86900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 87000Iteration: 87000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 87100Iteration: 87100,   Proposal: Multivariate,   LP: -18167.2
Iteration: 87200Iteration: 87200,   Proposal: Multivariate,   LP: -18168.8
Iteration: 87300Iteration: 87300,   Proposal: Multivariate,   LP: -18169.8
Iteration: 87400Iteration: 87400,   Proposal: Multivariate,   LP: -18169.8
Iteration: 87500Iteration: 87500,   Proposal: Multivariate,   LP: -18170.9
Iteration: 87600Iteration: 87600,   Proposal: Multivariate,   LP: -18167.1
Iteration: 87700Iteration: 87700,   Proposal: Multivariate,   LP: -18167.6
Iteration: 87800Iteration: 87800,   Proposal: Multivariate,   LP: -18167.2
Iteration: 87900Iteration: 87900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 88000Iteration: 88000,   Proposal: Multivariate,   LP: -18167.7
Iteration: 88100Iteration: 88100,   Proposal: Multivariate,   LP: -18168
Iteration: 88200Iteration: 88200,   Proposal: Multivariate,   LP: -18168
Iteration: 88300Iteration: 88300,   Proposal: Multivariate,   LP: -18168.6
Iteration: 88400Iteration: 88400,   Proposal: Multivariate,   LP: -18172.1
Iteration: 88500Iteration: 88500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 88600Iteration: 88600,   Proposal: Multivariate,   LP: -18167.1
Iteration: 88700Iteration: 88700,   Proposal: Multivariate,   LP: -18168.6
Iteration: 88800Iteration: 88800,   Proposal: Multivariate,   LP: -18167.7
Iteration: 88900Iteration: 88900,   Proposal: Multivariate,   LP: -18166.8
Iteration: 89000Iteration: 89000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 89100Iteration: 89100,   Proposal: Multivariate,   LP: -18167.1
Iteration: 89200Iteration: 89200,   Proposal: Multivariate,   LP: -18168.3
Iteration: 89300Iteration: 89300,   Proposal: Multivariate,   LP: -18168.2
Iteration: 89400Iteration: 89400,   Proposal: Multivariate,   LP: -18167.1
Iteration: 89500Iteration: 89500,   Proposal: Multivariate,   LP: -18168.8
Iteration: 89600Iteration: 89600,   Proposal: Multivariate,   LP: -18167.5
Iteration: 89700Iteration: 89700,   Proposal: Multivariate,   LP: -18167.7
Iteration: 89800Iteration: 89800,   Proposal: Multivariate,   LP: -18166.9
Iteration: 89900Iteration: 89900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 90000Iteration: 90000,   Proposal: Multivariate,   LP: -18166.9
Iteration: 90100Iteration: 90100,   Proposal: Multivariate,   LP: -18166.9
Iteration: 90200Iteration: 90200,   Proposal: Multivariate,   LP: -18166.9
Iteration: 90300Iteration: 90300,   Proposal: Multivariate,   LP: -18166.9
Iteration: 90400Iteration: 90400,   Proposal: Multivariate,   LP: -18168.4
Iteration: 90500Iteration: 90500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 90600Iteration: 90600,   Proposal: Multivariate,   LP: -18166.9
Iteration: 90700Iteration: 90700,   Proposal: Multivariate,   LP: -18167.4
Iteration: 90800Iteration: 90800,   Proposal: Multivariate,   LP: -18167.6
Iteration: 90900Iteration: 90900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 91000Iteration: 91000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 91100Iteration: 91100,   Proposal: Multivariate,   LP: -18167.1
Iteration: 91200Iteration: 91200,   Proposal: Multivariate,   LP: -18168.1
Iteration: 91300Iteration: 91300,   Proposal: Multivariate,   LP: -18167
Iteration: 91400Iteration: 91400,   Proposal: Multivariate,   LP: -18167
Iteration: 91500Iteration: 91500,   Proposal: Multivariate,   LP: -18167.4
Iteration: 91600Iteration: 91600,   Proposal: Multivariate,   LP: -18167.3
Iteration: 91700Iteration: 91700,   Proposal: Multivariate,   LP: -18167.3
Iteration: 91800Iteration: 91800,   Proposal: Multivariate,   LP: -18168.5
Iteration: 91900Iteration: 91900,   Proposal: Multivariate,   LP: -18168.5
Iteration: 92000Iteration: 92000,   Proposal: Multivariate,   LP: -18167.9
Iteration: 92100Iteration: 92100,   Proposal: Multivariate,   LP: -18167.9
Iteration: 92200Iteration: 92200,   Proposal: Multivariate,   LP: -18167.1
Iteration: 92300Iteration: 92300,   Proposal: Multivariate,   LP: -18167
Iteration: 92400Iteration: 92400,   Proposal: Multivariate,   LP: -18168.6
Iteration: 92500Iteration: 92500,   Proposal: Multivariate,   LP: -18168.9
Iteration: 92600Iteration: 92600,   Proposal: Multivariate,   LP: -18170.4
Iteration: 92700Iteration: 92700,   Proposal: Multivariate,   LP: -18167.9
Iteration: 92800Iteration: 92800,   Proposal: Multivariate,   LP: -18168.2
Iteration: 92900Iteration: 92900,   Proposal: Multivariate,   LP: -18167.1
Iteration: 93000Iteration: 93000,   Proposal: Multivariate,   LP: -18167.2
Iteration: 93100Iteration: 93100,   Proposal: Multivariate,   LP: -18167.5
Iteration: 93200Iteration: 93200,   Proposal: Multivariate,   LP: -18167
Iteration: 93300Iteration: 93300,   Proposal: Multivariate,   LP: -18167.1
Iteration: 93400Iteration: 93400,   Proposal: Multivariate,   LP: -18167.5
Iteration: 93500Iteration: 93500,   Proposal: Multivariate,   LP: -18167.2
Iteration: 93600Iteration: 93600,   Proposal: Multivariate,   LP: -18167
Iteration: 93700Iteration: 93700,   Proposal: Multivariate,   LP: -18167.8
Iteration: 93800Iteration: 93800,   Proposal: Multivariate,   LP: -18168.5
Iteration: 93900Iteration: 93900,   Proposal: Multivariate,   LP: -18168.5
Iteration: 94000Iteration: 94000,   Proposal: Multivariate,   LP: -18168.5
Iteration: 94100Iteration: 94100,   Proposal: Multivariate,   LP: -18168.8
Iteration: 94200Iteration: 94200,   Proposal: Multivariate,   LP: -18168.2
Iteration: 94300Iteration: 94300,   Proposal: Multivariate,   LP: -18168.1
Iteration: 94400Iteration: 94400,   Proposal: Multivariate,   LP: -18168.2
Iteration: 94500Iteration: 94500,   Proposal: Multivariate,   LP: -18167.9
Iteration: 94600Iteration: 94600,   Proposal: Multivariate,   LP: -18167.7
Iteration: 94700Iteration: 94700,   Proposal: Multivariate,   LP: -18167.2
Iteration: 94800Iteration: 94800,   Proposal: Multivariate,   LP: -18169.4
Iteration: 94900Iteration: 94900,   Proposal: Multivariate,   LP: -18166.9
Iteration: 95000Iteration: 95000,   Proposal: Multivariate,   LP: -18166.9
Iteration: 95100Iteration: 95100,   Proposal: Multivariate,   LP: -18167
Iteration: 95200Iteration: 95200,   Proposal: Multivariate,   LP: -18167.3
Iteration: 95300Iteration: 95300,   Proposal: Multivariate,   LP: -18167
Iteration: 95400Iteration: 95400,   Proposal: Multivariate,   LP: -18167.5
Iteration: 95500Iteration: 95500,   Proposal: Multivariate,   LP: -18166.9
Iteration: 95600Iteration: 95600,   Proposal: Multivariate,   LP: -18167
Iteration: 95700Iteration: 95700,   Proposal: Multivariate,   LP: -18169.6
Iteration: 95800Iteration: 95800,   Proposal: Multivariate,   LP: -18168.4
Iteration: 95900Iteration: 95900,   Proposal: Multivariate,   LP: -18169.4
Iteration: 96000Iteration: 96000,   Proposal: Multivariate,   LP: -18169.4
Iteration: 96100Iteration: 96100,   Proposal: Multivariate,   LP: -18167.1
Iteration: 96200Iteration: 96200,   Proposal: Multivariate,   LP: -18168.1
Iteration: 96300Iteration: 96300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 96400Iteration: 96400,   Proposal: Multivariate,   LP: -18167.6
Iteration: 96500Iteration: 96500,   Proposal: Multivariate,   LP: -18168.2
Iteration: 96600Iteration: 96600,   Proposal: Multivariate,   LP: -18168.5
Iteration: 96700Iteration: 96700,   Proposal: Multivariate,   LP: -18170
Iteration: 96800Iteration: 96800,   Proposal: Multivariate,   LP: -18167.4
Iteration: 96900Iteration: 96900,   Proposal: Multivariate,   LP: -18167.4
Iteration: 97000Iteration: 97000,   Proposal: Multivariate,   LP: -18167.7
Iteration: 97100Iteration: 97100,   Proposal: Multivariate,   LP: -18166.9
Iteration: 97200Iteration: 97200,   Proposal: Multivariate,   LP: -18167.3
Iteration: 97300Iteration: 97300,   Proposal: Multivariate,   LP: -18167
Iteration: 97400Iteration: 97400,   Proposal: Multivariate,   LP: -18167.2
Iteration: 97500Iteration: 97500,   Proposal: Multivariate,   LP: -18167.1
Iteration: 97600Iteration: 97600,   Proposal: Multivariate,   LP: -18170
Iteration: 97700Iteration: 97700,   Proposal: Multivariate,   LP: -18170.5
Iteration: 97800Iteration: 97800,   Proposal: Multivariate,   LP: -18170.5
Iteration: 97900Iteration: 97900,   Proposal: Multivariate,   LP: -18167.3
Iteration: 98000Iteration: 98000,   Proposal: Multivariate,   LP: -18167
Iteration: 98100Iteration: 98100,   Proposal: Multivariate,   LP: -18167
Iteration: 98200Iteration: 98200,   Proposal: Multivariate,   LP: -18167.7
Iteration: 98300Iteration: 98300,   Proposal: Multivariate,   LP: -18167.2
Iteration: 98400Iteration: 98400,   Proposal: Multivariate,   LP: -18167.2
Iteration: 98500Iteration: 98500,   Proposal: Multivariate,   LP: -18167.7
Iteration: 98600Iteration: 98600,   Proposal: Multivariate,   LP: -18168.8
Iteration: 98700Iteration: 98700,   Proposal: Multivariate,   LP: -18169
Iteration: 98800Iteration: 98800,   Proposal: Multivariate,   LP: -18167
Iteration: 98900Iteration: 98900,   Proposal: Multivariate,   LP: -18167.6
Iteration: 99000Iteration: 99000,   Proposal: Multivariate,   LP: -18167.1
Iteration: 99100Iteration: 99100,   Proposal: Multivariate,   LP: -18167
Iteration: 99200Iteration: 99200,   Proposal: Multivariate,   LP: -18167
Iteration: 99300Iteration: 99300,   Proposal: Multivariate,   LP: -18167.6
Iteration: 99400Iteration: 99400,   Proposal: Multivariate,   LP: -18167.6
Iteration: 99500Iteration: 99500,   Proposal: Multivariate,   LP: -18167
Iteration: 99600Iteration: 99600,   Proposal: Multivariate,   LP: -18166.8
Iteration: 99700Iteration: 99700,   Proposal: Multivariate,   LP: -18166.8
Iteration: 99800Iteration: 99800,   Proposal: Multivariate,   LP: -18166.8
Iteration: 99900Iteration: 99900,   Proposal: Multivariate,   LP: -18166.8
Iteration: 100000Iteration: 100000,   Proposal: Multivariate,   LP: -18167.4

Assessing Stationarity
Assessing Thinning and ESS
Creating Summaries
Estimating Log of the Marginal Likelihood
Creating Output

Laplace's Demon has finished.

In [23]:
magplot(density(Data$data,kern='rect',bw=0.2/
sqrt(12)),log='y',ylim=c(1e-4,1),xlab='Magnitude',ylab='Density')

ns=1/integrate(schec,-25,-14,ns=1,ms=-20.5,alpha=-1.2)$value

lines(seq(-24,-14,len=1e3),schec(seq(-24,-14,len=1e3),
ns=ns,ms=-20.5,alpha=-1.2),col='blue')

ns=1/integrate(schec,-25,-14,ns=1, ms=FitLF$Summary2[1,'Mean'],
alpha=FitLF$Summary2[2,'Mean'])$value

lines(seq(-24,-14,len=1e3),schec(seq(-24,-14,len=1e3),
ns=ns,ms=FitLF$Summary2[1,'Mean'],
alpha=FitLF$Summary2[2,'Mean']),col='red')


Warning message in xy.coords(x, y, xlabel, ylabel, log):
“8 y values <= 0 omitted from logarithmic plot”

It's a good fit! Let's examine the posterior distribution to see how well the Demon is performing.


In [49]:
magcon(FitLF$Posterior2[,1], FitLF$Posterior2[,2],conlevels=c(0.5,0.68,0.95),lty=c(2,1,3),xlim=c(-20.65,-20.2),ylim=c(-1.23,-1.16))
title(xlab='M*',ylab=expression(alpha))
points(FitLF$Summary2[1,'Mean'],FitLF$Summary2[2,'Mean'],col='black',pch=4)
points(-20.5,-1.2,col='blue',pch=4)


Warning: weights overwritten by binning