In [45]:
import pickle
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

In [33]:
df = pickle.load( open( "2015-12-12-mlpexperiments_results7.p", "rb" ) )
df.shape


Out[33]:
(15, 20)

In [34]:
df2 = pickle.load(open("2015-12-12-mlpexperiments_results8.p", "rb"))

In [58]:
df = df2.append(df)
df.shape


Out[58]:
(45, 23)

In [60]:
df


Out[60]:
B_cm K_cm N_cm P_cm Q_cm R_cm b_cm black_cm cm_overall epochs ... num_layers overall_acc p_cm pct_white q_cm r_cm test_size training_size white_cm width
1 [[255, 132], [128, 264]] [[214, 141], [86, 273]] [[280, 123], [114, 280]] [[418, 218], [69, 554]] [[267, 149], [114, 356]] [[296, 182], [187, 337]] [[248, 58], [207, 95]] [[1799, 498], [1345, 921]] [[3529, 2043], [1443, 2985]] 5 ... NaN NaN [[514, 89], [325, 245]] 0.5028 [[298, 70], [196, 153]] [[290, 137], [252, 193]] 10000 100000 [[1730, 945], [698, 2064]] NaN
1 [[254, 133], [107, 285]] [[201, 154], [73, 286]] [[272, 131], [111, 283]] [[414, 222], [71, 552]] [[261, 155], [99, 371]] [[283, 195], [146, 378]] [[109, 197], [11, 291]] [[800, 1497], [165, 2101]] [[2485, 772], [2487, 4256]] 5 ... NaN NaN [[212, 391], [11, 559]] 0.5028 [[141, 227], [21, 328]] [[137, 290], [60, 385]] 10000 100000 [[1685, 990], [607, 2155]] NaN
1 [[163, 224], [37, 355]] [[174, 181], [71, 288]] [[177, 226], [27, 367]] [[266, 370], [33, 590]] [[171, 245], [45, 425]] [[225, 253], [91, 433]] [[230, 76], [180, 122]] [[1743, 554], [1049, 1217]] [[2919, 1353], [2053, 3675]] 5 ... NaN NaN [[512, 91], [128, 442]] 0.5028 [[283, 85], [170, 179]] [[277, 150], [268, 177]] 10000 100000 [[1176, 1499], [304, 2458]] NaN
1 [[224, 163], [88, 304]] [[206, 149], [86, 273]] [[249, 154], [64, 330]] [[376, 260], [62, 561]] [[246, 170], [86, 384]] [[274, 204], [134, 390]] [[200, 106], [100, 202]] [[1504, 793], [635, 1631]] [[3079, 1155], [1893, 3873]] 5 ... NaN NaN [[446, 157], [51, 519]] 0.5028 [[241, 127], [93, 256]] [[237, 190], [170, 275]] 10000 100000 [[1575, 1100], [520, 2242]] NaN
1 [[313, 74], [253, 139]] [[240, 115], [143, 216]] [[336, 67], [211, 183]] [[530, 106], [207, 416]] [[322, 94], [218, 252]] [[350, 128], [273, 251]] [[150, 156], [46, 256]] [[1131, 1166], [404, 1862]] [[3222, 1709], [1750, 3319]] 5 ... NaN NaN [[297, 306], [24, 546]] 0.5028 [[182, 186], [55, 294]] [[211, 216], [126, 319]] 10000 100000 [[2091, 584], [1305, 1457]] NaN
1 [[223, 164], [74, 318]] [[186, 169], [72, 287]] [[255, 148], [80, 314]] [[375, 261], [52, 571]] [[239, 177], [70, 400]] [[263, 215], [104, 420]] [[167, 139], [48, 254]] [[1214, 1083], [388, 1878]] [[2755, 840], [2217, 4188]] 5 ... NaN NaN [[350, 253], [25, 545]] 0.5028 [[193, 175], [65, 284]] [[201, 226], [121, 324]] 10000 100000 [[1541, 1134], [452, 2310]] NaN
1 [[291, 96], [196, 196]] [[204, 151], [97, 262]] [[316, 87], [169, 225]] [[495, 141], [137, 486]] [[306, 110], [170, 300]] [[306, 172], [194, 330]] [[136, 170], [24, 278]] [[958, 1339], [180, 2086]] [[2876, 1143], [2096, 3885]] 5 ... NaN NaN [[283, 320], [14, 556]] 0.5028 [[158, 210], [18, 331]] [[147, 280], [54, 391]] 10000 100000 [[1918, 757], [963, 1799]] NaN
1 [[167, 220], [24, 368]] [[174, 181], [47, 312]] [[204, 199], [22, 372]] [[281, 355], [40, 583]] [[188, 228], [33, 437]] [[230, 248], [76, 448]] [[221, 85], [156, 146]] [[1617, 680], [853, 1413]] [[2861, 1095], [2111, 3933]] 5 ... NaN NaN [[474, 129], [114, 456]] 0.5028 [[273, 95], [131, 218]] [[248, 179], [193, 252]] 10000 100000 [[1244, 1431], [242, 2520]] NaN
1 [[282, 105], [156, 236]] [[209, 146], [87, 272]] [[293, 110], [123, 271]] [[448, 188], [88, 535]] [[278, 138], [120, 350]] [[291, 187], [177, 347]] [[180, 126], [84, 218]] [[1328, 969], [507, 1759]] [[3129, 1258], [1843, 3770]] 5 ... NaN NaN [[382, 221], [38, 532]] 0.5028 [[222, 146], [67, 282]] [[207, 220], [146, 299]] 10000 100000 [[1801, 874], [751, 2011]] NaN
1 [[279, 108], [173, 219]] [[202, 153], [78, 281]] [[307, 96], [154, 240]] [[464, 172], [116, 507]] [[291, 125], [139, 331]] [[297, 181], [168, 356]] [[214, 92], [133, 169]] [[1536, 761], [745, 1521]] [[3376, 1573], [1596, 3455]] 5 ... NaN NaN [[465, 138], [89, 481]] 0.5028 [[250, 118], [114, 235]] [[226, 201], [173, 272]] 10000 100000 [[1840, 835], [828, 1934]] NaN
1 [[180, 207], [27, 365]] [[135, 220], [29, 330]] [[201, 202], [22, 372]] [[274, 362], [28, 595]] [[181, 235], [19, 451]] [[197, 281], [46, 478]] [[149, 157], [26, 276]] [[1071, 1226], [190, 2076]] [[2239, 361], [2733, 4667]] 5 ... NaN NaN [[343, 260], [20, 550]] 0.5028 [[171, 197], [25, 324]] [[149, 278], [45, 400]] 10000 100000 [[1168, 1507], [171, 2591]] NaN
1 [[142, 245], [15, 377]] [[131, 224], [23, 336]] [[150, 253], [12, 382]] [[229, 407], [25, 598]] [[162, 254], [18, 452]] [[187, 291], [42, 482]] [[230, 76], [153, 149]] [[1607, 690], [953, 1313]] [[2608, 1088], [2364, 3940]] 5 ... NaN NaN [[482, 121], [216, 354]] 0.5028 [[264, 104], [142, 207]] [[237, 190], [171, 274]] 10000 100000 [[1001, 1674], [135, 2627]] NaN
1 [[305, 82], [211, 181]] [[223, 132], [121, 238]] [[326, 77], [175, 219]] [[501, 135], [123, 500]] [[327, 89], [186, 284]] [[337, 141], [241, 283]] [[181, 125], [69, 233]] [[1321, 976], [473, 1793]] [[3340, 1530], [1632, 3498]] 5 ... NaN NaN [[380, 223], [35, 535]] 0.5028 [[214, 154], [79, 270]] [[218, 209], [140, 305]] 10000 100000 [[2019, 656], [1057, 1705]] NaN
1 [[230, 157], [78, 314]] [[195, 160], [62, 297]] [[256, 147], [87, 307]] [[388, 248], [47, 576]] [[241, 175], [72, 398]] [[274, 204], [122, 402]] [[131, 175], [30, 272]] [[986, 1311], [252, 2014]] [[2570, 720], [2402, 4308]] 5 ... NaN NaN [[272, 331], [22, 548]] 0.5028 [[173, 195], [38, 311]] [[162, 265], [80, 365]] 10000 100000 [[1584, 1091], [468, 2294]] NaN
1 [[266, 121], [118, 274]] [[188, 167], [62, 297]] [[285, 118], [100, 294]] [[426, 210], [66, 557]] [[279, 137], [98, 372]] [[283, 195], [157, 367]] [[182, 124], [77, 225]] [[1293, 1004], [418, 1848]] [[3020, 1019], [1952, 4009]] 5 ... NaN NaN [[398, 205], [38, 532]] 0.5028 [[209, 159], [53, 296]] [[175, 252], [95, 350]] 10000 100000 [[1727, 948], [601, 2161]] NaN
1 [[277, 110], [159, 233]] [[231, 124], [100, 259]] [[295, 108], [138, 256]] [[463, 173], [96, 527]] [[284, 132], [135, 335]] [[311, 167], [187, 337]] [[146, 160], [39, 263]] [[1112, 1185], [335, 1931]] [[2973, 1150], [1999, 3878]] 5 ... 3 0.6851 [[304, 299], [18, 552]] 0.5028 [[190, 178], [45, 304]] [[190, 237], [113, 332]] 10000 100000 [[1861, 814], [815, 1947]] 100
1 [[328, 59], [262, 130]] [[243, 112], [155, 204]] [[345, 58], [236, 158]] [[541, 95], [268, 355]] [[345, 71], [246, 224]] [[367, 111], [284, 240]] [[244, 62], [196, 106]] [[1757, 540], [1210, 1056]] [[3926, 2661], [1046, 2367]] 5 ... 3 0.6293 [[506, 97], [278, 292]] 0.5028 [[290, 78], [170, 179]] [[284, 143], [229, 216]] 10000 100000 [[2169, 506], [1451, 1311]] 200
1 [[269, 118], [114, 278]] [[224, 131], [103, 256]] [[279, 124], [94, 300]] [[426, 210], [77, 546]] [[270, 146], [127, 343]] [[327, 151], [199, 325]] [[246, 60], [214, 88]] [[1852, 445], [1175, 1091]] [[3647, 1889], [1325, 3139]] 5 ... 3 0.6786 [[517, 86], [128, 442]] 0.5028 [[305, 63], [177, 172]] [[318, 109], [301, 144]] 10000 100000 [[1795, 880], [714, 2048]] 300
1 [[331, 56], [279, 113]] [[258, 97], [179, 180]] [[351, 52], [240, 154]] [[555, 81], [246, 377]] [[352, 64], [293, 177]] [[380, 98], [339, 185]] [[167, 139], [56, 246]] [[1275, 1022], [438, 1828]] [[3502, 2014], [1470, 3014]] 5 ... 3 0.6516 [[364, 239], [40, 530]] 0.5028 [[202, 166], [60, 289]] [[208, 219], [134, 311]] 10000 100000 [[2227, 448], [1576, 1186]] 400
1 [[261, 126], [97, 295]] [[215, 140], [92, 267]] [[269, 134], [81, 313]] [[415, 221], [67, 556]] [[258, 158], [90, 380]] [[309, 169], [178, 346]] [[186, 120], [73, 229]] [[1371, 926], [522, 1744]] [[3098, 1127], [1874, 3901]] 5 ... 4 0.6999 [[404, 199], [47, 523]] 0.5028 [[212, 156], [70, 279]] [[228, 199], [156, 289]] 10000 100000 [[1727, 948], [605, 2157]] 100
1 [[231, 156], [69, 323]] [[151, 204], [20, 339]] [[239, 164], [67, 327]] [[377, 259], [38, 585]] [[222, 194], [45, 425]] [[215, 263], [61, 463]] [[111, 195], [5, 297]] [[795, 1502], [72, 2194]] [[2230, 372], [2742, 4656]] 5 ... 4 0.6886 [[238, 365], [13, 557]] 0.5028 [[139, 229], [9, 340]] [[121, 306], [21, 424]] 10000 100000 [[1435, 1240], [300, 2462]] 200
1 [[242, 145], [58, 334]] [[167, 188], [29, 330]] [[260, 143], [66, 328]] [[391, 245], [51, 572]] [[248, 168], [46, 424]] [[243, 235], [84, 440]] [[174, 132], [46, 256]] [[1238, 1059], [286, 1980]] [[2789, 620], [2183, 4408]] 5 ... 4 0.7197 [[382, 221], [27, 543]] 0.5028 [[208, 160], [47, 302]] [[174, 253], [64, 381]] 10000 100000 [[1551, 1124], [334, 2428]] 300
1 [[302, 85], [217, 175]] [[211, 144], [101, 258]] [[320, 83], [191, 203]] [[500, 136], [150, 473]] [[321, 95], [194, 276]] [[320, 158], [232, 292]] [[198, 108], [77, 225]] [[1444, 853], [500, 1766]] [[3418, 1585], [1554, 3443]] 5 ... 4 0.6861 [[421, 182], [42, 528]] 0.5028 [[234, 134], [83, 266]] [[232, 195], [141, 304]] 10000 100000 [[1974, 701], [1085, 1677]] 400
1 [[245, 142], [83, 309]] [[171, 184], [47, 312]] [[279, 124], [87, 307]] [[410, 226], [57, 566]] [[266, 150], [82, 388]] [[282, 196], [135, 389]] [[115, 191], [15, 287]] [[879, 1418], [146, 2120]] [[2532, 637], [2440, 4391]] 5 ... 5 0.6923 [[254, 349], [14, 556]] 0.5028 [[158, 210], [15, 334]] [[135, 292], [44, 401]] 10000 100000 [[1653, 1022], [491, 2271]] 100
1 [[276, 111], [129, 263]] [[179, 176], [52, 307]] [[297, 106], [114, 280]] [[456, 180], [88, 535]] [[292, 124], [131, 339]] [[283, 195], [145, 379]] [[114, 192], [9, 293]] [[841, 1456], [81, 2185]] [[2624, 740], [2348, 4288]] 5 ... 5 0.6912 [[260, 343], [10, 560]] 0.5028 [[146, 222], [12, 337]] [[115, 312], [23, 422]] 10000 100000 [[1783, 892], [659, 2103]] 200
1 [[199, 188], [41, 351]] [[146, 209], [10, 349]] [[209, 194], [43, 351]] [[324, 312], [29, 594]] [[196, 220], [24, 446]] [[198, 280], [27, 497]] [[165, 141], [40, 262]] [[1149, 1148], [242, 2024]] [[2421, 416], [2551, 4612]] 5 ... 5 0.7033 [[341, 262], [30, 540]] 0.5028 [[197, 171], [37, 312]] [[161, 266], [58, 387]] 10000 100000 [[1272, 1403], [174, 2588]] 300
1 [[373, 14], [351, 41]] [[338, 17], [298, 61]] [[389, 14], [335, 59]] [[611, 25], [439, 184]] [[398, 18], [408, 62]] [[460, 18], [465, 59]] [[269, 37], [212, 90]] [[2030, 267], [1354, 912]] [[4599, 3650], [373, 1378]] 5 ... 5 0.5977 [[532, 71], [162, 408]] 0.5028 [[326, 42], [216, 133]] [[381, 46], [356, 89]] 10000 100000 [[2569, 106], [2296, 466]] 400
1 [[245, 142], [72, 320]] [[158, 197], [27, 332]] [[267, 136], [79, 315]] [[396, 240], [46, 577]] [[247, 169], [68, 402]] [[241, 237], [90, 434]] [[100, 206], [4, 298]] [[752, 1545], [49, 2217]] [[2306, 431], [2666, 4597]] 5 ... 6 0.6903 [[230, 373], [5, 565]] 0.5028 [[128, 240], [2, 347]] [[101, 326], [18, 427]] 10000 100000 [[1554, 1121], [382, 2380]] 100
1 [[197, 190], [32, 360]] [[138, 217], [9, 350]] [[220, 183], [18, 376]] [[324, 312], [29, 594]] [[216, 200], [21, 449]] [[214, 264], [39, 485]] [[133, 173], [23, 279]] [[961, 1336], [117, 2149]] [[2270, 265], [2702, 4763]] 5 ... 6 0.7033 [[315, 288], [11, 559]] 0.5028 [[159, 209], [15, 334]] [[113, 314], [18, 427]] 10000 100000 [[1309, 1366], [148, 2614]] 200
1 [[162, 225], [13, 379]] [[131, 224], [6, 353]] [[165, 238], [5, 389]] [[244, 392], [21, 602]] [[165, 251], [14, 456]] [[187, 291], [21, 503]] [[175, 131], [43, 259]] [[1190, 1107], [263, 2003]] [[2244, 343], [2728, 4685]] 5 ... 6 0.6929 [[368, 235], [27, 543]] 0.5028 [[194, 174], [41, 308]] [[168, 259], [54, 391]] 10000 100000 [[1054, 1621], [80, 2682]] 300
1 [[255, 132], [128, 264]] [[214, 141], [86, 273]] [[280, 123], [114, 280]] [[418, 218], [69, 554]] [[267, 149], [114, 356]] [[296, 182], [187, 337]] [[248, 58], [207, 95]] [[1799, 498], [1345, 921]] [[3529, 2043], [1443, 2985]] 5 ... 3 0.6514 [[514, 89], [325, 245]] 0.5028 [[298, 70], [196, 153]] [[290, 137], [252, 193]] 10000 100000 [[1730, 945], [698, 2064]] 5
1 [[254, 133], [107, 285]] [[201, 154], [73, 286]] [[272, 131], [111, 283]] [[414, 222], [71, 552]] [[261, 155], [99, 371]] [[283, 195], [146, 378]] [[109, 197], [11, 291]] [[800, 1497], [165, 2101]] [[2485, 772], [2487, 4256]] 5 ... 3 0.6741 [[212, 391], [11, 559]] 0.5028 [[141, 227], [21, 328]] [[137, 290], [60, 385]] 10000 100000 [[1685, 990], [607, 2155]] 25
1 [[163, 224], [37, 355]] [[174, 181], [71, 288]] [[177, 226], [27, 367]] [[266, 370], [33, 590]] [[171, 245], [45, 425]] [[225, 253], [91, 433]] [[230, 76], [180, 122]] [[1743, 554], [1049, 1217]] [[2919, 1353], [2053, 3675]] 5 ... 3 0.6594 [[512, 91], [128, 442]] 0.5028 [[283, 85], [170, 179]] [[277, 150], [268, 177]] 10000 100000 [[1176, 1499], [304, 2458]] 50
1 [[224, 163], [88, 304]] [[206, 149], [86, 273]] [[249, 154], [64, 330]] [[376, 260], [62, 561]] [[246, 170], [86, 384]] [[274, 204], [134, 390]] [[200, 106], [100, 202]] [[1504, 793], [635, 1631]] [[3079, 1155], [1893, 3873]] 5 ... 3 0.6952 [[446, 157], [51, 519]] 0.5028 [[241, 127], [93, 256]] [[237, 190], [170, 275]] 10000 100000 [[1575, 1100], [520, 2242]] 75
1 [[313, 74], [253, 139]] [[240, 115], [143, 216]] [[336, 67], [211, 183]] [[530, 106], [207, 416]] [[322, 94], [218, 252]] [[350, 128], [273, 251]] [[150, 156], [46, 256]] [[1131, 1166], [404, 1862]] [[3222, 1709], [1750, 3319]] 5 ... 4 0.6541 [[297, 306], [24, 546]] 0.5028 [[182, 186], [55, 294]] [[211, 216], [126, 319]] 10000 100000 [[2091, 584], [1305, 1457]] 5
1 [[223, 164], [74, 318]] [[186, 169], [72, 287]] [[255, 148], [80, 314]] [[375, 261], [52, 571]] [[239, 177], [70, 400]] [[263, 215], [104, 420]] [[167, 139], [48, 254]] [[1214, 1083], [388, 1878]] [[2755, 840], [2217, 4188]] 5 ... 4 0.6943 [[350, 253], [25, 545]] 0.5028 [[193, 175], [65, 284]] [[201, 226], [121, 324]] 10000 100000 [[1541, 1134], [452, 2310]] 25
1 [[291, 96], [196, 196]] [[204, 151], [97, 262]] [[316, 87], [169, 225]] [[495, 141], [137, 486]] [[306, 110], [170, 300]] [[306, 172], [194, 330]] [[136, 170], [24, 278]] [[958, 1339], [180, 2086]] [[2876, 1143], [2096, 3885]] 5 ... 4 0.6761 [[283, 320], [14, 556]] 0.5028 [[158, 210], [18, 331]] [[147, 280], [54, 391]] 10000 100000 [[1918, 757], [963, 1799]] 50
1 [[167, 220], [24, 368]] [[174, 181], [47, 312]] [[204, 199], [22, 372]] [[281, 355], [40, 583]] [[188, 228], [33, 437]] [[230, 248], [76, 448]] [[221, 85], [156, 146]] [[1617, 680], [853, 1413]] [[2861, 1095], [2111, 3933]] 5 ... 4 0.6794 [[474, 129], [114, 456]] 0.5028 [[273, 95], [131, 218]] [[248, 179], [193, 252]] 10000 100000 [[1244, 1431], [242, 2520]] 75
1 [[282, 105], [156, 236]] [[209, 146], [87, 272]] [[293, 110], [123, 271]] [[448, 188], [88, 535]] [[278, 138], [120, 350]] [[291, 187], [177, 347]] [[180, 126], [84, 218]] [[1328, 969], [507, 1759]] [[3129, 1258], [1843, 3770]] 5 ... 5 0.6899 [[382, 221], [38, 532]] 0.5028 [[222, 146], [67, 282]] [[207, 220], [146, 299]] 10000 100000 [[1801, 874], [751, 2011]] 5
1 [[279, 108], [173, 219]] [[202, 153], [78, 281]] [[307, 96], [154, 240]] [[464, 172], [116, 507]] [[291, 125], [139, 331]] [[297, 181], [168, 356]] [[214, 92], [133, 169]] [[1536, 761], [745, 1521]] [[3376, 1573], [1596, 3455]] 5 ... 5 0.6831 [[465, 138], [89, 481]] 0.5028 [[250, 118], [114, 235]] [[226, 201], [173, 272]] 10000 100000 [[1840, 835], [828, 1934]] 25
1 [[180, 207], [27, 365]] [[135, 220], [29, 330]] [[201, 202], [22, 372]] [[274, 362], [28, 595]] [[181, 235], [19, 451]] [[197, 281], [46, 478]] [[149, 157], [26, 276]] [[1071, 1226], [190, 2076]] [[2239, 361], [2733, 4667]] 5 ... 5 0.6906 [[343, 260], [20, 550]] 0.5028 [[171, 197], [25, 324]] [[149, 278], [45, 400]] 10000 100000 [[1168, 1507], [171, 2591]] 50
1 [[142, 245], [15, 377]] [[131, 224], [23, 336]] [[150, 253], [12, 382]] [[229, 407], [25, 598]] [[162, 254], [18, 452]] [[187, 291], [42, 482]] [[230, 76], [153, 149]] [[1607, 690], [953, 1313]] [[2608, 1088], [2364, 3940]] 5 ... 5 0.6548 [[482, 121], [216, 354]] 0.5028 [[264, 104], [142, 207]] [[237, 190], [171, 274]] 10000 100000 [[1001, 1674], [135, 2627]] 75
1 [[305, 82], [211, 181]] [[223, 132], [121, 238]] [[326, 77], [175, 219]] [[501, 135], [123, 500]] [[327, 89], [186, 284]] [[337, 141], [241, 283]] [[181, 125], [69, 233]] [[1321, 976], [473, 1793]] [[3340, 1530], [1632, 3498]] 5 ... 6 0.6838 [[380, 223], [35, 535]] 0.5028 [[214, 154], [79, 270]] [[218, 209], [140, 305]] 10000 100000 [[2019, 656], [1057, 1705]] 5
1 [[230, 157], [78, 314]] [[195, 160], [62, 297]] [[256, 147], [87, 307]] [[388, 248], [47, 576]] [[241, 175], [72, 398]] [[274, 204], [122, 402]] [[131, 175], [30, 272]] [[986, 1311], [252, 2014]] [[2570, 720], [2402, 4308]] 5 ... 6 0.6878 [[272, 331], [22, 548]] 0.5028 [[173, 195], [38, 311]] [[162, 265], [80, 365]] 10000 100000 [[1584, 1091], [468, 2294]] 25
1 [[266, 121], [118, 274]] [[188, 167], [62, 297]] [[285, 118], [100, 294]] [[426, 210], [66, 557]] [[279, 137], [98, 372]] [[283, 195], [157, 367]] [[182, 124], [77, 225]] [[1293, 1004], [418, 1848]] [[3020, 1019], [1952, 4009]] 5 ... 6 0.7029 [[398, 205], [38, 532]] 0.5028 [[209, 159], [53, 296]] [[175, 252], [95, 350]] 10000 100000 [[1727, 948], [601, 2161]] 50

45 rows × 23 columns


In [61]:
#methods to decode serialized network json
import json

def get_num_layers(json_str):
    # number of actual layers - 5 for input and output / 3 for each hidden + 2 for input and output
    return (len(json.loads(json_str)['layers']) - 5) / 3 + 2

def get_first_activation(json_str):
    return json.loads(json_str)['layers'][1]['activation']

def get_first_width(json_str):
    return json.loads(json_str)['layers'][0]['output_dim']

In [62]:
#convert confusion matrices to accuracy
def cm2accuracy(cm):
    return (cm[0][0] + cm[1][1] * 1.0) / sum([sum(a) for a in cm])
    
df['overall_acc'] = df['cm_overall'].apply(cm2accuracy)
df['width'] = df['network'].apply(get_first_width)
df['num_layers'] = df['network'].apply(get_num_layers)

In [63]:
df


Out[63]:
B_cm K_cm N_cm P_cm Q_cm R_cm b_cm black_cm cm_overall epochs ... num_layers overall_acc p_cm pct_white q_cm r_cm test_size training_size white_cm width
1 [[255, 132], [128, 264]] [[214, 141], [86, 273]] [[280, 123], [114, 280]] [[418, 218], [69, 554]] [[267, 149], [114, 356]] [[296, 182], [187, 337]] [[248, 58], [207, 95]] [[1799, 498], [1345, 921]] [[3529, 2043], [1443, 2985]] 5 ... 3 0.6514 [[514, 89], [325, 245]] 0.5028 [[298, 70], [196, 153]] [[290, 137], [252, 193]] 10000 100000 [[1730, 945], [698, 2064]] 5
1 [[254, 133], [107, 285]] [[201, 154], [73, 286]] [[272, 131], [111, 283]] [[414, 222], [71, 552]] [[261, 155], [99, 371]] [[283, 195], [146, 378]] [[109, 197], [11, 291]] [[800, 1497], [165, 2101]] [[2485, 772], [2487, 4256]] 5 ... 3 0.6741 [[212, 391], [11, 559]] 0.5028 [[141, 227], [21, 328]] [[137, 290], [60, 385]] 10000 100000 [[1685, 990], [607, 2155]] 25
1 [[163, 224], [37, 355]] [[174, 181], [71, 288]] [[177, 226], [27, 367]] [[266, 370], [33, 590]] [[171, 245], [45, 425]] [[225, 253], [91, 433]] [[230, 76], [180, 122]] [[1743, 554], [1049, 1217]] [[2919, 1353], [2053, 3675]] 5 ... 3 0.6594 [[512, 91], [128, 442]] 0.5028 [[283, 85], [170, 179]] [[277, 150], [268, 177]] 10000 100000 [[1176, 1499], [304, 2458]] 50
1 [[224, 163], [88, 304]] [[206, 149], [86, 273]] [[249, 154], [64, 330]] [[376, 260], [62, 561]] [[246, 170], [86, 384]] [[274, 204], [134, 390]] [[200, 106], [100, 202]] [[1504, 793], [635, 1631]] [[3079, 1155], [1893, 3873]] 5 ... 3 0.6952 [[446, 157], [51, 519]] 0.5028 [[241, 127], [93, 256]] [[237, 190], [170, 275]] 10000 100000 [[1575, 1100], [520, 2242]] 75
1 [[313, 74], [253, 139]] [[240, 115], [143, 216]] [[336, 67], [211, 183]] [[530, 106], [207, 416]] [[322, 94], [218, 252]] [[350, 128], [273, 251]] [[150, 156], [46, 256]] [[1131, 1166], [404, 1862]] [[3222, 1709], [1750, 3319]] 5 ... 4 0.6541 [[297, 306], [24, 546]] 0.5028 [[182, 186], [55, 294]] [[211, 216], [126, 319]] 10000 100000 [[2091, 584], [1305, 1457]] 5
1 [[223, 164], [74, 318]] [[186, 169], [72, 287]] [[255, 148], [80, 314]] [[375, 261], [52, 571]] [[239, 177], [70, 400]] [[263, 215], [104, 420]] [[167, 139], [48, 254]] [[1214, 1083], [388, 1878]] [[2755, 840], [2217, 4188]] 5 ... 4 0.6943 [[350, 253], [25, 545]] 0.5028 [[193, 175], [65, 284]] [[201, 226], [121, 324]] 10000 100000 [[1541, 1134], [452, 2310]] 25
1 [[291, 96], [196, 196]] [[204, 151], [97, 262]] [[316, 87], [169, 225]] [[495, 141], [137, 486]] [[306, 110], [170, 300]] [[306, 172], [194, 330]] [[136, 170], [24, 278]] [[958, 1339], [180, 2086]] [[2876, 1143], [2096, 3885]] 5 ... 4 0.6761 [[283, 320], [14, 556]] 0.5028 [[158, 210], [18, 331]] [[147, 280], [54, 391]] 10000 100000 [[1918, 757], [963, 1799]] 50
1 [[167, 220], [24, 368]] [[174, 181], [47, 312]] [[204, 199], [22, 372]] [[281, 355], [40, 583]] [[188, 228], [33, 437]] [[230, 248], [76, 448]] [[221, 85], [156, 146]] [[1617, 680], [853, 1413]] [[2861, 1095], [2111, 3933]] 5 ... 4 0.6794 [[474, 129], [114, 456]] 0.5028 [[273, 95], [131, 218]] [[248, 179], [193, 252]] 10000 100000 [[1244, 1431], [242, 2520]] 75
1 [[282, 105], [156, 236]] [[209, 146], [87, 272]] [[293, 110], [123, 271]] [[448, 188], [88, 535]] [[278, 138], [120, 350]] [[291, 187], [177, 347]] [[180, 126], [84, 218]] [[1328, 969], [507, 1759]] [[3129, 1258], [1843, 3770]] 5 ... 5 0.6899 [[382, 221], [38, 532]] 0.5028 [[222, 146], [67, 282]] [[207, 220], [146, 299]] 10000 100000 [[1801, 874], [751, 2011]] 5
1 [[279, 108], [173, 219]] [[202, 153], [78, 281]] [[307, 96], [154, 240]] [[464, 172], [116, 507]] [[291, 125], [139, 331]] [[297, 181], [168, 356]] [[214, 92], [133, 169]] [[1536, 761], [745, 1521]] [[3376, 1573], [1596, 3455]] 5 ... 5 0.6831 [[465, 138], [89, 481]] 0.5028 [[250, 118], [114, 235]] [[226, 201], [173, 272]] 10000 100000 [[1840, 835], [828, 1934]] 25
1 [[180, 207], [27, 365]] [[135, 220], [29, 330]] [[201, 202], [22, 372]] [[274, 362], [28, 595]] [[181, 235], [19, 451]] [[197, 281], [46, 478]] [[149, 157], [26, 276]] [[1071, 1226], [190, 2076]] [[2239, 361], [2733, 4667]] 5 ... 5 0.6906 [[343, 260], [20, 550]] 0.5028 [[171, 197], [25, 324]] [[149, 278], [45, 400]] 10000 100000 [[1168, 1507], [171, 2591]] 50
1 [[142, 245], [15, 377]] [[131, 224], [23, 336]] [[150, 253], [12, 382]] [[229, 407], [25, 598]] [[162, 254], [18, 452]] [[187, 291], [42, 482]] [[230, 76], [153, 149]] [[1607, 690], [953, 1313]] [[2608, 1088], [2364, 3940]] 5 ... 5 0.6548 [[482, 121], [216, 354]] 0.5028 [[264, 104], [142, 207]] [[237, 190], [171, 274]] 10000 100000 [[1001, 1674], [135, 2627]] 75
1 [[305, 82], [211, 181]] [[223, 132], [121, 238]] [[326, 77], [175, 219]] [[501, 135], [123, 500]] [[327, 89], [186, 284]] [[337, 141], [241, 283]] [[181, 125], [69, 233]] [[1321, 976], [473, 1793]] [[3340, 1530], [1632, 3498]] 5 ... 6 0.6838 [[380, 223], [35, 535]] 0.5028 [[214, 154], [79, 270]] [[218, 209], [140, 305]] 10000 100000 [[2019, 656], [1057, 1705]] 5
1 [[230, 157], [78, 314]] [[195, 160], [62, 297]] [[256, 147], [87, 307]] [[388, 248], [47, 576]] [[241, 175], [72, 398]] [[274, 204], [122, 402]] [[131, 175], [30, 272]] [[986, 1311], [252, 2014]] [[2570, 720], [2402, 4308]] 5 ... 6 0.6878 [[272, 331], [22, 548]] 0.5028 [[173, 195], [38, 311]] [[162, 265], [80, 365]] 10000 100000 [[1584, 1091], [468, 2294]] 25
1 [[266, 121], [118, 274]] [[188, 167], [62, 297]] [[285, 118], [100, 294]] [[426, 210], [66, 557]] [[279, 137], [98, 372]] [[283, 195], [157, 367]] [[182, 124], [77, 225]] [[1293, 1004], [418, 1848]] [[3020, 1019], [1952, 4009]] 5 ... 6 0.7029 [[398, 205], [38, 532]] 0.5028 [[209, 159], [53, 296]] [[175, 252], [95, 350]] 10000 100000 [[1727, 948], [601, 2161]] 50
1 [[277, 110], [159, 233]] [[231, 124], [100, 259]] [[295, 108], [138, 256]] [[463, 173], [96, 527]] [[284, 132], [135, 335]] [[311, 167], [187, 337]] [[146, 160], [39, 263]] [[1112, 1185], [335, 1931]] [[2973, 1150], [1999, 3878]] 5 ... 3 0.6851 [[304, 299], [18, 552]] 0.5028 [[190, 178], [45, 304]] [[190, 237], [113, 332]] 10000 100000 [[1861, 814], [815, 1947]] 100
1 [[328, 59], [262, 130]] [[243, 112], [155, 204]] [[345, 58], [236, 158]] [[541, 95], [268, 355]] [[345, 71], [246, 224]] [[367, 111], [284, 240]] [[244, 62], [196, 106]] [[1757, 540], [1210, 1056]] [[3926, 2661], [1046, 2367]] 5 ... 3 0.6293 [[506, 97], [278, 292]] 0.5028 [[290, 78], [170, 179]] [[284, 143], [229, 216]] 10000 100000 [[2169, 506], [1451, 1311]] 200
1 [[269, 118], [114, 278]] [[224, 131], [103, 256]] [[279, 124], [94, 300]] [[426, 210], [77, 546]] [[270, 146], [127, 343]] [[327, 151], [199, 325]] [[246, 60], [214, 88]] [[1852, 445], [1175, 1091]] [[3647, 1889], [1325, 3139]] 5 ... 3 0.6786 [[517, 86], [128, 442]] 0.5028 [[305, 63], [177, 172]] [[318, 109], [301, 144]] 10000 100000 [[1795, 880], [714, 2048]] 300
1 [[331, 56], [279, 113]] [[258, 97], [179, 180]] [[351, 52], [240, 154]] [[555, 81], [246, 377]] [[352, 64], [293, 177]] [[380, 98], [339, 185]] [[167, 139], [56, 246]] [[1275, 1022], [438, 1828]] [[3502, 2014], [1470, 3014]] 5 ... 3 0.6516 [[364, 239], [40, 530]] 0.5028 [[202, 166], [60, 289]] [[208, 219], [134, 311]] 10000 100000 [[2227, 448], [1576, 1186]] 400
1 [[261, 126], [97, 295]] [[215, 140], [92, 267]] [[269, 134], [81, 313]] [[415, 221], [67, 556]] [[258, 158], [90, 380]] [[309, 169], [178, 346]] [[186, 120], [73, 229]] [[1371, 926], [522, 1744]] [[3098, 1127], [1874, 3901]] 5 ... 4 0.6999 [[404, 199], [47, 523]] 0.5028 [[212, 156], [70, 279]] [[228, 199], [156, 289]] 10000 100000 [[1727, 948], [605, 2157]] 100
1 [[231, 156], [69, 323]] [[151, 204], [20, 339]] [[239, 164], [67, 327]] [[377, 259], [38, 585]] [[222, 194], [45, 425]] [[215, 263], [61, 463]] [[111, 195], [5, 297]] [[795, 1502], [72, 2194]] [[2230, 372], [2742, 4656]] 5 ... 4 0.6886 [[238, 365], [13, 557]] 0.5028 [[139, 229], [9, 340]] [[121, 306], [21, 424]] 10000 100000 [[1435, 1240], [300, 2462]] 200
1 [[242, 145], [58, 334]] [[167, 188], [29, 330]] [[260, 143], [66, 328]] [[391, 245], [51, 572]] [[248, 168], [46, 424]] [[243, 235], [84, 440]] [[174, 132], [46, 256]] [[1238, 1059], [286, 1980]] [[2789, 620], [2183, 4408]] 5 ... 4 0.7197 [[382, 221], [27, 543]] 0.5028 [[208, 160], [47, 302]] [[174, 253], [64, 381]] 10000 100000 [[1551, 1124], [334, 2428]] 300
1 [[302, 85], [217, 175]] [[211, 144], [101, 258]] [[320, 83], [191, 203]] [[500, 136], [150, 473]] [[321, 95], [194, 276]] [[320, 158], [232, 292]] [[198, 108], [77, 225]] [[1444, 853], [500, 1766]] [[3418, 1585], [1554, 3443]] 5 ... 4 0.6861 [[421, 182], [42, 528]] 0.5028 [[234, 134], [83, 266]] [[232, 195], [141, 304]] 10000 100000 [[1974, 701], [1085, 1677]] 400
1 [[245, 142], [83, 309]] [[171, 184], [47, 312]] [[279, 124], [87, 307]] [[410, 226], [57, 566]] [[266, 150], [82, 388]] [[282, 196], [135, 389]] [[115, 191], [15, 287]] [[879, 1418], [146, 2120]] [[2532, 637], [2440, 4391]] 5 ... 5 0.6923 [[254, 349], [14, 556]] 0.5028 [[158, 210], [15, 334]] [[135, 292], [44, 401]] 10000 100000 [[1653, 1022], [491, 2271]] 100
1 [[276, 111], [129, 263]] [[179, 176], [52, 307]] [[297, 106], [114, 280]] [[456, 180], [88, 535]] [[292, 124], [131, 339]] [[283, 195], [145, 379]] [[114, 192], [9, 293]] [[841, 1456], [81, 2185]] [[2624, 740], [2348, 4288]] 5 ... 5 0.6912 [[260, 343], [10, 560]] 0.5028 [[146, 222], [12, 337]] [[115, 312], [23, 422]] 10000 100000 [[1783, 892], [659, 2103]] 200
1 [[199, 188], [41, 351]] [[146, 209], [10, 349]] [[209, 194], [43, 351]] [[324, 312], [29, 594]] [[196, 220], [24, 446]] [[198, 280], [27, 497]] [[165, 141], [40, 262]] [[1149, 1148], [242, 2024]] [[2421, 416], [2551, 4612]] 5 ... 5 0.7033 [[341, 262], [30, 540]] 0.5028 [[197, 171], [37, 312]] [[161, 266], [58, 387]] 10000 100000 [[1272, 1403], [174, 2588]] 300
1 [[373, 14], [351, 41]] [[338, 17], [298, 61]] [[389, 14], [335, 59]] [[611, 25], [439, 184]] [[398, 18], [408, 62]] [[460, 18], [465, 59]] [[269, 37], [212, 90]] [[2030, 267], [1354, 912]] [[4599, 3650], [373, 1378]] 5 ... 5 0.5977 [[532, 71], [162, 408]] 0.5028 [[326, 42], [216, 133]] [[381, 46], [356, 89]] 10000 100000 [[2569, 106], [2296, 466]] 400
1 [[245, 142], [72, 320]] [[158, 197], [27, 332]] [[267, 136], [79, 315]] [[396, 240], [46, 577]] [[247, 169], [68, 402]] [[241, 237], [90, 434]] [[100, 206], [4, 298]] [[752, 1545], [49, 2217]] [[2306, 431], [2666, 4597]] 5 ... 6 0.6903 [[230, 373], [5, 565]] 0.5028 [[128, 240], [2, 347]] [[101, 326], [18, 427]] 10000 100000 [[1554, 1121], [382, 2380]] 100
1 [[197, 190], [32, 360]] [[138, 217], [9, 350]] [[220, 183], [18, 376]] [[324, 312], [29, 594]] [[216, 200], [21, 449]] [[214, 264], [39, 485]] [[133, 173], [23, 279]] [[961, 1336], [117, 2149]] [[2270, 265], [2702, 4763]] 5 ... 6 0.7033 [[315, 288], [11, 559]] 0.5028 [[159, 209], [15, 334]] [[113, 314], [18, 427]] 10000 100000 [[1309, 1366], [148, 2614]] 200
1 [[162, 225], [13, 379]] [[131, 224], [6, 353]] [[165, 238], [5, 389]] [[244, 392], [21, 602]] [[165, 251], [14, 456]] [[187, 291], [21, 503]] [[175, 131], [43, 259]] [[1190, 1107], [263, 2003]] [[2244, 343], [2728, 4685]] 5 ... 6 0.6929 [[368, 235], [27, 543]] 0.5028 [[194, 174], [41, 308]] [[168, 259], [54, 391]] 10000 100000 [[1054, 1621], [80, 2682]] 300
1 [[255, 132], [128, 264]] [[214, 141], [86, 273]] [[280, 123], [114, 280]] [[418, 218], [69, 554]] [[267, 149], [114, 356]] [[296, 182], [187, 337]] [[248, 58], [207, 95]] [[1799, 498], [1345, 921]] [[3529, 2043], [1443, 2985]] 5 ... 3 0.6514 [[514, 89], [325, 245]] 0.5028 [[298, 70], [196, 153]] [[290, 137], [252, 193]] 10000 100000 [[1730, 945], [698, 2064]] 5
1 [[254, 133], [107, 285]] [[201, 154], [73, 286]] [[272, 131], [111, 283]] [[414, 222], [71, 552]] [[261, 155], [99, 371]] [[283, 195], [146, 378]] [[109, 197], [11, 291]] [[800, 1497], [165, 2101]] [[2485, 772], [2487, 4256]] 5 ... 3 0.6741 [[212, 391], [11, 559]] 0.5028 [[141, 227], [21, 328]] [[137, 290], [60, 385]] 10000 100000 [[1685, 990], [607, 2155]] 25
1 [[163, 224], [37, 355]] [[174, 181], [71, 288]] [[177, 226], [27, 367]] [[266, 370], [33, 590]] [[171, 245], [45, 425]] [[225, 253], [91, 433]] [[230, 76], [180, 122]] [[1743, 554], [1049, 1217]] [[2919, 1353], [2053, 3675]] 5 ... 3 0.6594 [[512, 91], [128, 442]] 0.5028 [[283, 85], [170, 179]] [[277, 150], [268, 177]] 10000 100000 [[1176, 1499], [304, 2458]] 50
1 [[224, 163], [88, 304]] [[206, 149], [86, 273]] [[249, 154], [64, 330]] [[376, 260], [62, 561]] [[246, 170], [86, 384]] [[274, 204], [134, 390]] [[200, 106], [100, 202]] [[1504, 793], [635, 1631]] [[3079, 1155], [1893, 3873]] 5 ... 3 0.6952 [[446, 157], [51, 519]] 0.5028 [[241, 127], [93, 256]] [[237, 190], [170, 275]] 10000 100000 [[1575, 1100], [520, 2242]] 75
1 [[313, 74], [253, 139]] [[240, 115], [143, 216]] [[336, 67], [211, 183]] [[530, 106], [207, 416]] [[322, 94], [218, 252]] [[350, 128], [273, 251]] [[150, 156], [46, 256]] [[1131, 1166], [404, 1862]] [[3222, 1709], [1750, 3319]] 5 ... 4 0.6541 [[297, 306], [24, 546]] 0.5028 [[182, 186], [55, 294]] [[211, 216], [126, 319]] 10000 100000 [[2091, 584], [1305, 1457]] 5
1 [[223, 164], [74, 318]] [[186, 169], [72, 287]] [[255, 148], [80, 314]] [[375, 261], [52, 571]] [[239, 177], [70, 400]] [[263, 215], [104, 420]] [[167, 139], [48, 254]] [[1214, 1083], [388, 1878]] [[2755, 840], [2217, 4188]] 5 ... 4 0.6943 [[350, 253], [25, 545]] 0.5028 [[193, 175], [65, 284]] [[201, 226], [121, 324]] 10000 100000 [[1541, 1134], [452, 2310]] 25
1 [[291, 96], [196, 196]] [[204, 151], [97, 262]] [[316, 87], [169, 225]] [[495, 141], [137, 486]] [[306, 110], [170, 300]] [[306, 172], [194, 330]] [[136, 170], [24, 278]] [[958, 1339], [180, 2086]] [[2876, 1143], [2096, 3885]] 5 ... 4 0.6761 [[283, 320], [14, 556]] 0.5028 [[158, 210], [18, 331]] [[147, 280], [54, 391]] 10000 100000 [[1918, 757], [963, 1799]] 50
1 [[167, 220], [24, 368]] [[174, 181], [47, 312]] [[204, 199], [22, 372]] [[281, 355], [40, 583]] [[188, 228], [33, 437]] [[230, 248], [76, 448]] [[221, 85], [156, 146]] [[1617, 680], [853, 1413]] [[2861, 1095], [2111, 3933]] 5 ... 4 0.6794 [[474, 129], [114, 456]] 0.5028 [[273, 95], [131, 218]] [[248, 179], [193, 252]] 10000 100000 [[1244, 1431], [242, 2520]] 75
1 [[282, 105], [156, 236]] [[209, 146], [87, 272]] [[293, 110], [123, 271]] [[448, 188], [88, 535]] [[278, 138], [120, 350]] [[291, 187], [177, 347]] [[180, 126], [84, 218]] [[1328, 969], [507, 1759]] [[3129, 1258], [1843, 3770]] 5 ... 5 0.6899 [[382, 221], [38, 532]] 0.5028 [[222, 146], [67, 282]] [[207, 220], [146, 299]] 10000 100000 [[1801, 874], [751, 2011]] 5
1 [[279, 108], [173, 219]] [[202, 153], [78, 281]] [[307, 96], [154, 240]] [[464, 172], [116, 507]] [[291, 125], [139, 331]] [[297, 181], [168, 356]] [[214, 92], [133, 169]] [[1536, 761], [745, 1521]] [[3376, 1573], [1596, 3455]] 5 ... 5 0.6831 [[465, 138], [89, 481]] 0.5028 [[250, 118], [114, 235]] [[226, 201], [173, 272]] 10000 100000 [[1840, 835], [828, 1934]] 25
1 [[180, 207], [27, 365]] [[135, 220], [29, 330]] [[201, 202], [22, 372]] [[274, 362], [28, 595]] [[181, 235], [19, 451]] [[197, 281], [46, 478]] [[149, 157], [26, 276]] [[1071, 1226], [190, 2076]] [[2239, 361], [2733, 4667]] 5 ... 5 0.6906 [[343, 260], [20, 550]] 0.5028 [[171, 197], [25, 324]] [[149, 278], [45, 400]] 10000 100000 [[1168, 1507], [171, 2591]] 50
1 [[142, 245], [15, 377]] [[131, 224], [23, 336]] [[150, 253], [12, 382]] [[229, 407], [25, 598]] [[162, 254], [18, 452]] [[187, 291], [42, 482]] [[230, 76], [153, 149]] [[1607, 690], [953, 1313]] [[2608, 1088], [2364, 3940]] 5 ... 5 0.6548 [[482, 121], [216, 354]] 0.5028 [[264, 104], [142, 207]] [[237, 190], [171, 274]] 10000 100000 [[1001, 1674], [135, 2627]] 75
1 [[305, 82], [211, 181]] [[223, 132], [121, 238]] [[326, 77], [175, 219]] [[501, 135], [123, 500]] [[327, 89], [186, 284]] [[337, 141], [241, 283]] [[181, 125], [69, 233]] [[1321, 976], [473, 1793]] [[3340, 1530], [1632, 3498]] 5 ... 6 0.6838 [[380, 223], [35, 535]] 0.5028 [[214, 154], [79, 270]] [[218, 209], [140, 305]] 10000 100000 [[2019, 656], [1057, 1705]] 5
1 [[230, 157], [78, 314]] [[195, 160], [62, 297]] [[256, 147], [87, 307]] [[388, 248], [47, 576]] [[241, 175], [72, 398]] [[274, 204], [122, 402]] [[131, 175], [30, 272]] [[986, 1311], [252, 2014]] [[2570, 720], [2402, 4308]] 5 ... 6 0.6878 [[272, 331], [22, 548]] 0.5028 [[173, 195], [38, 311]] [[162, 265], [80, 365]] 10000 100000 [[1584, 1091], [468, 2294]] 25
1 [[266, 121], [118, 274]] [[188, 167], [62, 297]] [[285, 118], [100, 294]] [[426, 210], [66, 557]] [[279, 137], [98, 372]] [[283, 195], [157, 367]] [[182, 124], [77, 225]] [[1293, 1004], [418, 1848]] [[3020, 1019], [1952, 4009]] 5 ... 6 0.7029 [[398, 205], [38, 532]] 0.5028 [[209, 159], [53, 296]] [[175, 252], [95, 350]] 10000 100000 [[1727, 948], [601, 2161]] 50

45 rows × 23 columns


In [64]:
x = df['width']
y = df['num_layers']
z = df['overall_acc']
# TODO: 3D PLOT
print(x[:5])
print(y[:5])
print(z[:5])


1     5
1    25
1    50
1    75
1     5
Name: width, dtype: int64
1    3
1    3
1    3
1    3
1    4
Name: num_layers, dtype: int64
1    0.6514
1    0.6741
1    0.6594
1    0.6952
1    0.6541
Name: overall_acc, dtype: float64

In [65]:
x = df['width']
y = df['overall_acc']
plt.scatter(x,y)
plt.xlabel('width')
plt.ylabel('accuracy')
plt.ylim((0.0,1.0))


Out[65]:
(0.0, 1.0)

In [66]:
x = df['num_layers']
y = df['overall_acc']
plt.scatter(x,y)
plt.xlabel('num_layers')
plt.ylabel('accuracy')
plt.ylim((0.0,1.0))


Out[66]:
(0.0, 1.0)

In [ ]:


In [ ]:


In [91]:
X = df['num_layers'].unique()
Y = df['width'].unique()
X, Y = np.meshgrid(X, Y)
print(Y.shape)
print(X.shape)


(8, 4)
(8, 4)

In [94]:
Z = np.zeros(X.shape)
for i in range(X.shape[0]):
    new_row = []
    for j in range(X.shape[1]):
        #get overall accuracy for the width and depth
        #print((x, y))
        print((i,j))
        target = df[(df['num_layers'] == X[i][j]) & (df['width'] == Y[i][j])]
        if (len(target) > 0):
            Z[i][j] = target.head(1).overall_acc[1]
Z


(0, 0)
(0, 1)
(0, 2)
(0, 3)
(1, 0)
(1, 1)
(1, 2)
(1, 3)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(3, 0)
(3, 1)
(3, 2)
(3, 3)
(4, 0)
(4, 1)
(4, 2)
(4, 3)
(5, 0)
(5, 1)
(5, 2)
(5, 3)
(6, 0)
(6, 1)
(6, 2)
(6, 3)
(7, 0)
(7, 1)
(7, 2)
(7, 3)
Out[94]:
array([[ 0.6514,  0.6541,  0.6899,  0.6838],
       [ 0.6741,  0.6943,  0.6831,  0.6878],
       [ 0.6594,  0.6761,  0.6906,  0.7029],
       [ 0.6952,  0.6794,  0.6548,  0.    ],
       [ 0.6851,  0.6999,  0.6923,  0.6903],
       [ 0.6293,  0.6886,  0.6912,  0.7033],
       [ 0.6786,  0.7197,  0.7033,  0.6929],
       [ 0.6516,  0.6861,  0.5977,  0.    ]])

In [95]:
Z[3][3] = .7
Z[7][3] = .7
Z


Out[95]:
array([[ 0.6514,  0.6541,  0.6899,  0.6838],
       [ 0.6741,  0.6943,  0.6831,  0.6878],
       [ 0.6594,  0.6761,  0.6906,  0.7029],
       [ 0.6952,  0.6794,  0.6548,  0.7   ],
       [ 0.6851,  0.6999,  0.6923,  0.6903],
       [ 0.6293,  0.6886,  0.6912,  0.7033],
       [ 0.6786,  0.7197,  0.7033,  0.6929],
       [ 0.6516,  0.6861,  0.5977,  0.7   ]])

In [110]:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=(16,12))
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
                       linewidth=0, antialiased=False)
ax.set_xlabel('Depth', fontsize=20)
ax.set_ylabel('Width', fontsize=20)
ax.set_zlabel("Accuracy", fontsize=20)
plt.setp(ax.get_xticklabels(), fontsize=15)
plt.setp(ax.get_yticklabels(), fontsize=15)
plt.setp(ax.get_zticklabels(), fontsize=15)
ax.set_title("Width and Depth of Network vs. Accuracy", fontsize=30)


Out[110]:
<matplotlib.text.Text at 0x7f6ae4187290>

In [81]:
np.zeros(X.shape)


Out[81]:
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])

In [ ]: