In [2]:
import MySQLdb
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import datetime as dt
from sklearn.cluster import KMeans, DBSCAN
from matplotlib.backends.backend_pdf import PdfPages

In [20]:
def make_vec_list(pid_list):
    vec_list = []
    for pid in pid_list:
        ratings, time = get_data(pid, cursor, tablename)
        vector = make_features_vec(avg_rating(ratings), time)
        vec_list.append(vector)
    return vec_list

In [4]:
#returns ratings and time for a given pid in tablename with cursor pointing toward the database
def get_data(PID, cursor, tablename):
    sql = "Select RTime, RScore From " +tablename + " Where PID = " + '"' + PID +'";'
    cursor.execute(sql)
    data = cursor.fetchall()
    data = sorted(data)
    rating = np.array(zip(*data)[1], dtype = int)
    time = np.array(zip(*data)[0], dtype = float)
    #dates=[dt.datetime.fromtimestamp(ts) for ts in time]
    return rating, time#, dates

In [5]:
def avg_rating(rating):
    avg = [0]*len(rating)
    avg[0] = float(rating[0])
    for k in range(1, len(rating)):
        avg[k]= float(np.mean(rating[:k]))
    return avg

In [6]:
# This returns the longest time span covering 1/4 of reviews and the shortest time span covering 1/4 of reviews
def pop_time(time): 
    unpopmin = time[0]
    unpopmax = time[0]
    popmin = time[0]
    popmax = time[len(time)-1]
    slidermin = 0
    slidersize = int(len(time)/4)
    for i in range(slidersize, len(time)): #i marks the end of the slider
        windowsize = time[i] - time[i - slidersize]
        if windowsize > unpopmax - unpopmin:
            unpopmax = time[i]
            unpopmin = time[i - slidersize]
        if windowsize < popmax - popmin:
            popmax = time[i]
            popmin = time[i - slidersize]
            
            
    return unpopmin, unpopmax, popmin, popmax

In [7]:
#this gives the average slope of the cumulative avg rating (or whatever you pass it) in the 2nd, 3rd, and 4th quarter of reviews
#on account of sparseness effects I divided by num of reviews rather than time, not clear if that's the best choice

#need a reasonable number of reviews (>40) for this to work 

#note: input must be unix timestamp (seconds)
def quarterly_slopes(ratings, timestamp):
    time = map(lambda foo: float(foo/(60*60*24*365)), timestamp)
    q = (len(ratings)/4)-1
    q1 = 0
    if len(ratings)>45:
        q1 = float((ratings[q]-ratings[10])/(time[q] - time[10]))
    return q1, float((ratings[2*q] - ratings[q])/(time[2*q]-time[q])), float((ratings[3*q]-ratings[2*q])/(time[3*q]-time[2*q])), float((ratings[4*q]-ratings[3*q])/(time[4*q]-time[3*q]))

In [8]:
#This should check if the reviews at the start are "significantly" higher than average; by more than .5 stars
def starts_high(ratings, time):
    startavg = sum(ratings[:10])/10
    avg = sum(ratings)/len(ratings)
    if startavg > avg + .5:
        return True
    else: 
        return False

In [9]:
#features vector, need at least 50? reviews for all these to be meaningful
def make_features_vec(ratings, time):
    vec = []
    n = len(ratings)
    unpopmin, unpopmax, popmin, popmax = pop_time(time)
    q1, q2, q3, q4 = quarterly_slopes(ratings, time)
    #bit 1
    if unpopmin <= time[n/10]:
        vec.append(1)
    else:
        vec.append(0)
    #bit 2
    if unpopmax >= time[9*n/10]:
        vec.append(1)
    else:
        vec.append(0)
    #bit 3
    if popmin <= time[n/10]:
        vec.append(1)
    else:
        vec.append(0)
    #bit 4
    if popmax >= time[9*n/10]:
        vec.append(1)
    else:
        vec.append(0)
    #bit 5
    vec.append(q1*10)
    #bit 6
    vec.append(q2*10)
    #bit 7
    vec.append(q3*10)
    #bit 8
    vec.append(q4*10)
#    #bit 5               #this is not pythonic. get better at python. 
#    if q1 < -1:
#        vec.append(-1)
#    elif q1 > 1:
#        vec.append(1)
#    else:
#        vec.append(0)
    
    # bit 6
#    if q2 < -.12:
#        vec.append(-1)
#    elif q2 > .12:
#        vec.append(1)
#    else:
#        vec.append(0)
#    #bit 7
#    if q3 < -.12:
#        vec.append(-1)
#    elif q3 > .12:
#        vec.append(1)
#    else:
#        vec.append(0)
#    #bit 8
#    if q4 < -.12:
#        vec.append(-1)
#    elif q4 > 1:
#        vec.append(1)
#    else:
#        vec.append(0)
    #bit 9
    if starts_high(ratings, time) == True:
        vec.append(1)
    else:
        vec.append(0)
    #bit 10
    vec.append(ratings[len(ratings)-1])
    return vec

In [11]:
def dist_from_centroid(vec_list, centroid):
    centroid = np.array(centroid)
    dists = []
    for vec in vec_list:
        dist = np.linalg.norm(centroid - np.array(vec))
        dists.append(dist)
    return dists

In [11]:


In [12]:
database = "home_kitchen"
tablename = "all_hk"
numids = 1000

In [13]:
db = MySQLdb.connect(host="localhost", user="root", db = database)
cursor = db.cursor()

In [14]:
sql = "Select PID from (SELECT distinct PID, count(*) as magnitude from " + tablename + " group by pid having magnitude > 100) as x limit " +str(numids) +";"

In [15]:
cursor.execute(sql)


Out[15]:
1000L

In [16]:
pids = cursor.fetchall()

In [17]:
pids = tuple(x[0] for x in pids)

In [21]:
vec_list = make_vec_list(pids)

In [19]:
print vec_list


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-19-7aea40e40756> in <module>()
----> 1 print vec_list

NameError: name 'vec_list' is not defined

In [42]:
kmeans = KMeans(n_clusters = 8)
kmeans.fit(vec_list)


Out[42]:
KMeans(copy_x=True, init='k-means++', max_iter=300, n_clusters=8, n_init=10,
    n_jobs=1, precompute_distances=True, random_state=None, tol=0.0001,
    verbose=0)

In [43]:
centroids = kmeans.cluster_centers_

In [68]:
labels = kmeans.labels_

In [22]:
pp = PdfPages('cluster0.pdf')
metadata = pp.infodict()
metadata['Title'] = 'plots for cluster 0'

In [23]:
pp = PdfPages('cluster1.pdf')
metadata = pp.infodict()
metadata['Title'] = 'plots for cluster 1'

pp = PdfPages('cluster2.pdf')
metadata = pp.infodict()
metadata['Title'] = 'plots for cluster 1'

pp = PdfPages('cluster3.pdf')
metadata = pp.infodict()
metadata['Title'] = 'plots for cluster'

pp = PdfPages('cluster4.pdf')
metadata = pp.infodict()
metadata['Title'] = 'plots for cluster 0'

pp = PdfPages('cluster5.pdf')
metadata = pp.infodict()
metadata['Title'] = 'plots for cluster 0'

pp = PdfPages('cluster6.pdf')
metadata = pp.infodict()
metadata['Title'] = 'plots for cluster 0'

pp = PdfPages('cluster7.pdf')
metadata = pp.infodict()
metadata['Title'] = 'plots for cluster 0'

In [23]:


In [24]:
for i in range(10):
    fig = plt.figure(figsize=(10, 5), dpi=100)
    ratings, time = get_data(pids[i], cursor, tablename)
    dates = [dt.datetime.fromtimestamp(ts) for ts in time]
    ratings = avg_rating(ratings)
    filename = 'cluster' + str(labels[i]) + '.pdf'
    plt.scatter(ratings, time)
    plt.savefig(filename, format = 'pdf')


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-24-e08c31184b71> in <module>()
      4     dates = [dt.datetime.fromtimestamp(ts) for ts in time]
      5     ratings = avg_rating(ratings)
----> 6     filename = 'cluster' + str(labels[i]) + '.pdf'
      7     plt.scatter(ratings, time)
      8     plt.savefig(filename, format = 'pdf')

NameError: name 'labels' is not defined

In [25]:
print centroids


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-25-7c69a96eb67c> in <module>()
----> 1 print centroids

NameError: name 'centroids' is not defined

In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [46]:
print vec_list[0]


[1, 0, 0, 0, -2.5726219308804565, 0.16669276338108985, 0.40647172993095526, -0.021361018774286387, 1, 2.4055299539170507]

In [48]:
min_dist = np.linalg.norm(np.array(centroids[0]) - np.array(vec_list[0]))

In [55]:
dists0 = dist_from_centroid(vec_list, centroids[0])

In [63]:
rep = 0
for i in range(len(dists0)):
    if dists0[i] == min(dists0):
        rep = i
        print i


52

In [64]:
ratings, time = get_data(pids[i], cursor, tablename)

In [65]:
dates = [dt.datetime.fromtimestamp(ts) for ts in time]

In [66]:
ratings = avg_rating(ratings)

In [67]:
plt.scatter(dates, ratings)


Out[67]:
<matplotlib.collections.PathCollection at 0x10aa4d8d0>

In [ ]:
################ copied code I want to refer to later ##################

In [265]:
dates=[dt.datetime.fromtimestamp(ts) for ts in time_test]

In [266]:
plt.scatter(dates, rating_test)


Out[266]:
<matplotlib.collections.PathCollection at 0x10f689e50>

In [119]: