In [2]:
from os import path, getenv

In [3]:
HOME = getenv('HOME')
source_dir = HOME+'/data/tests/'
files = ['CDD_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_AMJJAS_20060101-20101231.nc','PRCPTOT_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_yr_20060101-20101231.nc']
#files = ['CDD_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_AMJJAS_20060101-20301231.nc','PRCPTOT_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_yr_20060101-20301231.nc']

In [4]:
resource = [path.join(source_dir, f) for f in files ]
resource


Out[4]:
['/home/nils/data/tests/CDD_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_AMJJAS_20060101-20101231.nc',
 '/home/nils/data/tests/PRCPTOT_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_yr_20060101-20101231.nc']

In [5]:
from flyingpigeon import spatial_analog as sa

In [7]:
reload(sa)
coordinate= [-73.590544, 45.513130]
gam_model , graphic = sa.get_gam(resource, coordinate)


file opened!
gam plotted ;-)
file opened!
gam plotted ;-)
 2 plots generated 

In [15]:
graphic


Out[15]:
'/home/nils/birdhouse/flyingpigeon/notebooks/tmpLFdlNf.png'

In [29]:
point = Point(float(coordinate[0]), float(coordinate[1]))
call(resource=resource[1], geom=point, select_nearest=True)


Out[29]:
'./21d765d2-75da-11e6-97c4-975acfa35e9a.nc'

In [7]:
from flyingpigeon import utils

In [8]:
reload(utils)
nc = './0584e510-75dc-11e6-bfd7-f54d5ee1259e.nc'
variable = utils.get_variable(nc)
lats, lons = utils.unrotate_pole(nc, write_to_file=True)
utils.get_values( nc, variable =variable )


---------------------------------------------------------------------------
IOError                                   Traceback (most recent call last)
<ipython-input-8-0e4095769a69> in <module>()
      3 variable = utils.get_variable(nc)
      4 lats, lons = utils.unrotate_pole(nc, write_to_file=True)
----> 5 utils.get_values( nc, variable =variable )

/homel/nhempel/birdhouse/flyingpigeon/flyingpigeon/utils.py in get_values(nc_files, variable)
    364   if variable == None:
    365       variable = get_variable(nc_files)
--> 366   mds = MFDataset(nc_files)
    367   vals = squeeze(mds.variables[variable][:])
    368   return vals

netCDF4/_netCDF4.pyx in netCDF4._netCDF4.MFDataset.__init__ (netCDF4/_netCDF4.c:62702)()

IOError: master dataset ./0584e510-75dc-11e6-bfd7-f54d5ee1259e.nc does not have a aggregation dimension

In [34]:
from netCDF4 import Dataset

ds = Dataset(resource[0])
ds.close()

In [27]:
ds.variables.keys()


Out[27]:
[u'time', u'climatology_bounds', u'rlat', u'rlon', u'rotated_pole', u'CDD']

In [28]:
if 'lat' in ds.variables.keys(): 
    print 'its in '

In [20]:
from numpy import min, max, mean

In [24]:
print min(lats)  , max(lats)


12.538726934 75.8600006104

In [25]:
print min(lons)  , max(lons)


-170.710522646 -23.2894773544

In [ ]: