In [2]:
from os import path, getenv
In [3]:
HOME = getenv('HOME')
source_dir = HOME+'/data/tests/'
files = ['CDD_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_AMJJAS_20060101-20101231.nc','PRCPTOT_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_yr_20060101-20101231.nc']
#files = ['CDD_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_AMJJAS_20060101-20301231.nc','PRCPTOT_NAM-44_ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5_v1_yr_20060101-20301231.nc']
In [4]:
resource = [path.join(source_dir, f) for f in files ]
resource
Out[4]:
In [5]:
from flyingpigeon import spatial_analog as sa
In [7]:
reload(sa)
coordinate= [-73.590544, 45.513130]
gam_model , graphic = sa.get_gam(resource, coordinate)
In [15]:
graphic
Out[15]:
In [29]:
point = Point(float(coordinate[0]), float(coordinate[1]))
call(resource=resource[1], geom=point, select_nearest=True)
Out[29]:
In [7]:
from flyingpigeon import utils
In [8]:
reload(utils)
nc = './0584e510-75dc-11e6-bfd7-f54d5ee1259e.nc'
variable = utils.get_variable(nc)
lats, lons = utils.unrotate_pole(nc, write_to_file=True)
utils.get_values( nc, variable =variable )
In [34]:
from netCDF4 import Dataset
ds = Dataset(resource[0])
ds.close()
In [27]:
ds.variables.keys()
Out[27]:
In [28]:
if 'lat' in ds.variables.keys():
print 'its in '
In [20]:
from numpy import min, max, mean
In [24]:
print min(lats) , max(lats)
In [25]:
print min(lons) , max(lons)
In [ ]: