In [3]:
# %load ../common_import.py
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
from sklearn import datasets
In [4]:
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.model_selection import cross_val_score
In [5]:
rng = np.random.RandomState(0)
In [1]:
data = datasets.load_boston()
X_full, y_full = data.data, data.target
n_samples = X_full.shape[0]
n_features = y_full.shape[1]
In [ ]: