Nonlinear least squares fit to 54 observations
Estimate Std.Error t value Pr(>|t|)
R0 193.599 24.9701 7.75323 <1e-9
rc 0.166576 0.0383033 4.34888 <1e-4
m 2.35223 0.593953 3.96029 0.0002
Residual sum of squares at estimates: 513.048
Residual standard error = 3.17171 on 51 degrees of freedom
Iteration: 1, rss = 1679.58, cvg = 0.257787 at [201.837,0.0484065]
Incr: [0.012547]
f = 1.0, rss = 1211.92
Iteration: 2, rss = 1211.92, cvg = 0.0122645 at [210.623,0.0609536]
Incr: [0.00280048]
f = 1.0, rss = 1195.66
Iteration: 3, rss = 1195.66, cvg = 0.000161307 at [212.448,0.063754]
Incr: [0.000331041]
f = 1.0, rss = 1195.45
Iteration: 4, rss = 1195.45, cvg = 1.56158e-6 at [212.661,0.0640851]
Incr: [3.27084e-5]
f = 1.0, rss = 1195.45
Iteration: 5, rss = 1195.45, cvg = 1.4557e-8 at [212.681,0.0641178]
Incr: [3.15934e-6]
f = 1.0, rss = 1195.45
Iteration: 6, rss = 1195.45, cvg = 1.35192e-10 at [212.684,0.0641209]
Incr: [3.04477e-7]
f = 1.0, rss = 1195.45
Out[5]:
Nonlinear least squares fit to 12 observations
Estimate Std.Error t value Pr(>|t|)
Vm 212.684 6.94715 30.6145 <1e-10
K 0.0641212 0.00828095 7.74323 <1e-4
Residual sum of squares at estimates: 1195.45
Residual standard error = 10.9337 on 10 degrees of freedom
Nonlinear least squares fit to 11 observations
Estimate Std.Error t value Pr(>|t|)
Vm 160.28 6.48024 24.7336 <1e-8
K 0.0477081 0.00778187 6.13068 0.0002
Residual sum of squares at estimates: 859.604
Residual standard error = 9.773 on 9 degrees of freedom